Свойства спиртов, альдегидов, кислот, сложных эфиров, фенола. Изомерия, характерная для органиче­ских соединений, в молекулах которых имеет­ся бензольное кольцо Названия карбоновых кислот

Заместители CH 3 , CH 2 R, CHR 2 , CR 3 , OH, OR, NH 2 , NHR, NR 2 , F, Cl, Br, I и другие называются заместителями первого рода. Они способны отдавать электроны– это электронодонорные заместители.

Заместители второго рода способны оттягивать на себя, принимать электроны. Это – электроноакцепторные заместители. К ним относятся SO 3 H, NO 2 , COOH, COOR, CHO, COR, CN, NH 3 + и другие.

В свою очередь, атакующие (замещающие) группы могут бытьэлектрофильными илинуклеофильными. Электрофильные реагенты в реакции служат акцепторами электронов. В частном случае – это катионы . Нуклеофильные реагенты в реакции являются донорами электронов . В частном случае – это анионы .

Если реагент действует на ядро с одним заместителем, то можно выделить несколько вариантов их взаимодействия:

заместитель первого рода; реагент электрофильный.

В качестве примера рассмотрим реакцию нитрования толуола нитрующей смесью (смесь азотной и серной кислот).

Метильная группа в толуоле является ориентантом первого рода. Это электронодонорная частица . Поэтому ядро в целом из-за смещения электронной плотности от метильной группы получает дробный отрицательный заряд. Ближайшие к заместителю атомы углерода цикла заряжаются также отрицательно . Последующие углероды цикла приобретают чередующиеся заряды (альтернирующий эффект). Реакция между азотной и серной кислотами нитрующей смеси дает несколько частиц, среди которых присутствует электрофильная частица NO 2 + (на схеме показана над стрелкой в скобках), которая атакует отрицательно заряженные атомы цикла. Происходит замещение водородных атомов на нитрогруппу в орто - и пара -положениях относительно метильной группы. Поскольку ядро имеет отрицательный заряд, а атакующая частица электрофильна (заряжена положительно), реакция облегчается и может протекать в более мягких условиях по сравнению с нитрованием бензола.

Заместитель второго рода; реагент электрофильный.

Сульфогруппа (ориентант второго рода, электроноакцепторный) благодаря смещению электронной плотности к себе заряжает ядро в целом и ближайшие углероды ядра положительно. Атакующая частица электрофильна. Ориентация в мета -положение. Заместитель затрудняет действие реагента. Сульфирование следует проводить концентрирован-ной серной кислотой при повышенной температуре.

Заместитель второго рода; реагент нуклеофильный.

В соответствии с зарядами нуклеофильная частица OK – атакует орто - и пара -положения и заместитель облегчает действие реагента. Тем не менее, реакции нуклеофильного замещения приходится проводить в довольно жестких условиях. Это объясняется энергетической невыгодностью переходного состояния в реакции и тем, что π -электронное облако молекулы отталкивает атакующую нуклеофильную частицу.

Заместитель первого рода; реагент нуклеофильный.

Заместитель затрудняет действие реагента. Ориентация в мета -положение. Такие реакции практически не реализуются.

Если в ядре имеется несколько различных заместителей, то преимущественное направляющее действие оказывает тот из них, который обладает наибольшим ориентирующим действием. Например, в реакциях электрофильного замещения по силе ориентационного действия заместители можно расположить в следующий ряд:

OH > NH 2 > ОR > Cl > I > Br > CH 3 ; Ориентирующая способность ориентантов второго рода убывает в следующей последовательности: NO 2 > COOH > SO 3 H . В качестве примера приведена реакция хлорирования орто -крезола (1-гидрокси-2-метилбензола):

Оба заместителя – ориентанты первого рода, электроно-донорные. Судя по зарядам на атомах углерода (в скобках – от группы –ОН), ориентация не совпадает. Поскольку фенольный гидроксил является более сильным ориентантом , в основном получаются продукты, соответствующие ориентации этой группы. Оба заместителя облегчают протекание реакции. Реакция электрофильная благодаря взаимодействию катализатора с молекулярным хлором.

На практике правила замещения чаще всего выполняются не строго. При замещении получаются все возможные продукты. Но продуктов, которые должны получаться по правилам, всегда больше. Например, при нитровании толуола образуется 62 % орто -, 33,5 % пара - и 4,5 % мета -нитротолуолов.

Изменение внешней среды (температура, давление, катализатор, растворитель и т. д.) обычно слабо влияет на ориентацию.

Ряд реакций замещения показан при объяснении правил ориентации. Рассмотрим еще несколько реакций.

– При действии на бензол хлора или брома в присутствии катализаторов – переносчиков галоидов, например, FeCl 3 , AlCl 3 , SnCl 4 и других происходит последовательное замещение атомов водорода при циклических углеродах на галоген.

В последней электрофильной реакции хлор как ориентант первого рода направляет второй атом хлора в орто - и пара - положения (преимущественно – в пара -). Однако в отличие от других ориентантов первого рода он затрудняет реакцию из-за своих сильно выраженных электороноакцепторных свойств, заряжая ядро положительно. В момент атаки электрофильной частицы галоген исходного соединения возвращает часть электронной плотности ядру, создавая заряды на его углеродах, соответствующие действию ориентанта первого рода (динамический эффект ориентации).

Галогенирование алкилзамещенных бензола на свету протекает по радикальному механизму, и замещение происходит у
α-углеродного атома боковой цепи :

При нитровании по Коновалову (разбавленный водный раствор азотной кислоты, ~140 °C), протекающему по радикальному механизму, также приводит к замещению в боковой цепи :

Окисление бензола и его гомологов

Бензольное кольцо окисляется очень трудно . Однако в присутствии катализатора V 2 O 5 при температуре 400 °C…500 °C бензол образует малеиновую кислоту:

Гомологи бензола при окислении дают ароматические кислоты . Причём боковая цепь даёт карбоксильную группу при ароматическом кольце, независимо от своей длины.

Подбором окислителей можно добиться последовательного окисления боковых цепей.

В присутствии катализаторов из алкилбензолов образуются гидроперекиси , разложением которых получают фенол и соответствующие кетоны.

пирокатехин

резорцин

гидрохинон

флороглюцин

пирогаллол

Для систематического названия фенолов применяется заместительная номенклатура ИЮПАК, согласно которой фенолы рассматриваются как гидроксильные производные бензола. Так, сам фенол, родоначальник ряда, должен иметь строгое название гидроксибензол . Однако во многих случаях производные бензола, содержащие гидроксогруппу в кольце, рассматриваются как производные фенола, что и отражается в названии. Например:

C2 H5

3-этилфенол

3-бром-2,4-динитрофенол

(1-гидрокси-3-этилбензол)

(1-гидрокси-3-бром-2,4-динитробензол)

Для ароматических спиртов названия по заместительной номенклатуре строятся так же, как и для алифатических. При этом родоначальной структурой является боковая алифатическая цепь, так как там находится функциональная группа. Например:

CH2 -OH

CH2 -CH-OH

фенилметанол

1-фенилпропан-2-ол

Кроме того, для названия ароматических спиртов, так же как и алифатических, могут применяться радикало-функциональная и рациональная номенклатуры. Так, фенилметанол, простейший представитель ароматических спиртов, по радикало-функциональной номенклатуре получит название бен-

зиловый спирт.

Фенолы и ароматические спирты являются структурными изомерами (например, крезолы изомерны бензиловому спирту). Кроме того, могут наблюдаться и другие виды изомерии, так же как и для многих производных углеводородов.

10.5.2. СТРОЕНИЕ ФЕНОЛА И БЕНЗИЛОВОГО СПИРТА

В молекуле фенола природа и направленность элек-

тронных эффектов такая же, что и в галогенобензолах. То

есть, атом кислорода гидроксогруппы взаимодействует с

бензольным кольцом посредством –I- и +М -эффектов.

Однако (!) в молекуле фенола + М -эффект больше – I -

эффекта (по модулю). Значительный положительный мезомерный эффект объясняется соответствием геометрической конфигурации внешних (взаимодействующих) р -орбиталей углерода и кислорода, оба этих атома - это атомы II периода Периодической таблицы химических элементов. В результате суммарный электронный эффект, которым обладает гидроксогруппа по отношению к бензольному кольцу, - это донорный эффект.

За счѐт р- -сопряжения увеличивается степень двоесвязанности между углеродом и кислородом: эта связь имеет 23.7 % -характера. Строение фенола должно быть сходно также со строением несуществующего винилового спирта (гл. 5.1.2, 5.3.1). Но в отличие от винилового спирта фенол не изомеризуется благодаря устойчивой ароматической системе.

Длина связи C–О в феноле меньше, чем в спиртах (в феноле 0.136 нм , в метаноле 0.143 нм ), а прочность этой связи больше, чем в спиртах. Кроме того, вследствие р- -сопряжения на атоме кислорода появляется дефицит электронной плотности (частичный положительный заряд), за счѐт которого увеличивается полярность связи О–Н настолько, что фенолы проявляют свойства слабых кислот.

Положительный мезомерный эффект гидроксогруппы приводит к значительному увеличению электронной плотности на бензольном кольце и главным образом в о- и п- положениях (гл. 10.1.1). Этому состоянию отвечает мезоформула

В молекуле бензилового спирта атом кислорода гидроксогруппы непосредственно не связан с ароматическим кольцом, поэтому сопряжение между

ними невозможно. Гидроксогруппа влияет на бензоль-

ное кольцо только посредством индуктивного эффекта

(–I -эффект), уменьшая тем самым величину электрон-

ной плотности на нѐм. Но -электронная система бен-

зольного кольца может взаимодействовать с С–Н -связями -углеродного атома (сверхсопряжение аналогичное тому, какое наблюдается в толуоле). Поэтому электронная плотность в ароматическом кольце в целом несколько понижена по сравнению с бензолом, но орто- и особенно пара- положение в меньшей степени испытывают это понижение. Длина и прочность связей С–О и О–Н мало отличаются от таковых для алифатических спиртов, так как влияние бензольного кольца на фрагмент С–О–Н невелико.

10.5.3. ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ СВОЙСТВА ФЕНОЛОВ

По агрегатному состоянию фенолы представляют собой бесцветные твѐрдые вещества или, реже, жидкости с сильным своеобразным запахом. При хранении на воздухе постепенно окисляются и, как следствие, приобретают окраску от розовой до жѐлто-коричневой.

Фенолы труднорастворимы в воде, а высокие температуры кипения их обусловлены наличием межмолекулярных водородных связей (аналогично спиртам).

Химические свойства фенолов обусловлены взаимным влиянием гидроксогруппы и бензольного кольца, поэтому для них характерны как реакции по бензольному кольцу, так и реакции с участием гидроксильной группы.

10.5.3.1. Кислотно-оснόвные свойства

Кислотные свойства у фенолов выражены сильнее, чем у спиртов (алифатических и ароматических). Это обусловлено значительно более сильной поляризацией связи О–Н за счѐт смещения электронной плотности от атома кислорода к бензольному кольцу:

Кислотные свойства фенолов могут быть также объяснены большей устойчивостью фенолят-иона, который образуется при диссоциации фенола. В фе- нолят-анионе в делокализации отрицательного заряда принимает участие-электронная система ароматического кольца:

Однако кислотные свойства фенолов выражены слабее, чем у карбоновых кислот, диссоциация фенолов в водных растворах протекает, но равновесие этой реакции смещено влево. Значение рК а для фенола и его гомологов лежит в пределах от 9.9 до 10.4, в то время как для уксусной кислоты рК а = 4.76, а для угольной рК а = 6.35 (по первой ступени диссоциации). То есть фенол не взаимодействует с гидрокарбонатами металлов, но может взаимодействовать со средними солями угольной кислоты, превращая их в кислые соли, так как по второй ступени диссоциации угольная кислота слабее фенола.

OH + NaHCO3

OH + Na2 CO3 ONa + NaHCO3

Соли фенола, феноляты, при взаимодействии с угольной кислотой превращаются в фенол:

ONa + H2 CO3 OH + NaHCO3

Введение электронодонорных или акцепторных заместителей в ароматическое кольцо фенола (особенно в о- и п- положениях) соответственно понижает или повышает его кислотные свойства. Это влияние аналогично действию заместителей на ароматическое кольцо сульфокислот (гл. 10.3.3.4). Так же, как и в аренсульфокислотах, электроноакцепторные заместители увеличивают кислотные свойства за счѐт более полной делокализации отрицательного заряда в анионе; электронодонорные заместители, наоборот,

уменьшают кислотные свойства, так как в этом случае их электронный эффект препятствует делокализации заряда аниона:

По тем же причинам (из-за р- -сопряжения, в котором участвует неподелѐнная электронная пара электронов кислорода) основность фенолов значительно понижена по сравнению со спиртами.

10.5.3.2. Нуклеофильные свойства

За счѐт +М -эффекта гидроксильной группы в молекуле фенола понижены как основные, так и нуклеофильные свойства. Поэтому реакции, в которых фенол играет роль нуклеофила, протекают с трудом. Повышению реакционной способности фенола способствует щелочная среда, при этом молекула фенола переходит в фенолят-ион. Такими реакциями являются алкилирование и ацилирование.

Алкилирование (образование простых эфиров). В общем случае ще-

лочная среда способствует протеканию реакции по S N 2-механизму, поэтому легче должны алкилироваться субстраты, имеющие доступный электрофильный реакционный центр с высоким эффективным положительным зарядом. Такими субстратами могут быть первичные алкилгалогениды и прежде всего

Производные метана.

O-CH2 -R

R-CH2 Br

В ряде случаев в качестве метилирующего средства используется диметилсульфат, в частности, при синтезе метиловых эфиров гидрохинона, м -крезола, 4-метил-2-нитрофенола и др. Например:

OCH3

(CH3 )2 SO4 / OH-

4-метил-2-нитрофенол

4-метил-1-метокси-2-нитробензол

Этим же способом можно получать о- и п -нитроанизолы из о- и п -нитро- фенолов.

Ацилирование (образование сложных эфиров). По причине понижен-

ной нуклеофильности гидроксогруппы фенолы могут подвергаться атаке только высокореакционноспособных ацилирующих агентов, таких как ангидриды и галогенангидриды карбоновых кислот. Реакцию проводят в слабощелочной среде (обычно в присутствии карбонатов):

Na2 CO3

NaCl

NaHCO 3

Ацилирование салициловой кислоты уксусным ангидридом используется в производстве препарата аспирин :

+ (CH3 CO)2 O

CH3 COOH

O-C-CH3

салициловая кислота

(О -ацетилсалициловая кислота)

Этерификация под действием карбоновых кислот для фенолов обычно не идѐт и становится возможной только в присутствии сильных водоотнимающих средств (PCl 3 , POCl 3 , P 2 O 5 ). Эта реакция используется в производстве лекарственного препарата салол :

10.5.3.3. Электрофильное замещение

Фенолы подобно многим ароматическим соединениям способны вступать в реакции электрофильного замещения (S E ). Более того, реакции фенолов с электрофильными реагентами протекают значительно легче, чем бензола и аренов. Это связано с большим +М -эффектом, оказываемым гидроксильной группой по отношению к бензольному кольцу (гл. 10.1.1). В результате электронная плотность на кольце повышена, и это повышение наблюдается главным образом в о- и п- положениях.

Поэтому механизм взаимодействия фенола с электрофильной частицей можно представить следующим образом:

OH H

Вступление электрофила в о- и п -положения бензольного кольца может быть объяснено также сравнением устойчивости образующихся - комплексов.

Рассмотрим некоторые примеры и особенности протекания реакций S E для фенолов.

Галогенирование протекает легко. Катализатор не требуется. рировании

конечным продуктом может быть пентахлорфенол. Бромирование, как правило, проводят в разбавленных водных растворах.

3 Br2

3 HBr

2,4,4,6-тетрабромциклогекс-2,5-диен-1-он

Нитрование может проводиться как концентрированной, так и разбавленной азотной кислотой. Концентрированная азотная кислота нитрует фенол сразу до ди- и тринитропроизводных, например:

NO2 +

при этом протекает сильное осмоление фенола.

В молекулах фенолов и их эфиров может происходить не только замещение атома водорода, но и пространственно доступных алкильных групп:

H3 C CH

H3 C CH

H3 CO

NO2 +

H3 CO

NO2 +

H3 C CH

CH CH3

H3 CO

H3 CO

CH(CH3 )2 +

H3 C CH

H3 CO

H3 CO

Действие разбавленной азотной кислоты на фенолы при комнатной температуре приводит к орто- и пара- замещѐнным мононитрофенолам:

HNO3 +H2 O

Учитывая, что в разбавленной кислоте нитроний-катион не образуется и потому нитрование по электрофильному механизму невозможно, реакция в данном случае представляет окислительное нитрозирование (за счѐт диоксида азота, содержащегося в азотной кислоте):

2 NO 2

HNO3

HNO2

HNO3

HNO2

Поэтому для проведения мононитрования вместо разбавленной азотной кислоты может быть использована смесь азотной и азотистой кислот.

Кроме этого, нитрозирование используется и для определения фенолов (реакция Либермана ). Фенол обрабатывают концентрированной серной кислотой и добавляют несколько капель водного раствора нитрита натрия. При разбавлении раствор приобретает красное окрашивание, при добавлении щѐлочи окраска переходит в голубую. Эта цветная реакция объясняется образованием индофенола, анион которого имеет синюю окраску:

N-OH2

индофенол (красный цвет)

O N O-

синий цвет

Сульфирование фенолов приводит к фенолсульфоновым кислотам. Соотношение орто- и пара- изомеров определяется температурой реакции. Ор- то- изомер образуется уже при 15 С, но при температуре 100 С и выше он перегруппировывается в более стабильный п -изомер.

288 K

SO3 H

H2 SO4

373 K

373 K

SO3 H

Алкилирование . Помимо алкилирования по атому кислорода, которое протекает в щелочной среде и приводит к образованию простых (алкилариловых) эфиров, реакция может протекать по бензольному кольцу. Алкилирование в этом случае требует применения кислотных катализаторов. В качестве алкилирующих агентов обычно используют спирты и алкены в присутствии протонных кислот (H 2 SO 4 , H 3 PO 4 ) или кислот Льюиса (BF 3 ):

R+ [ BF3 OH]

R-OH + BF3

5. Изомерия, характерная для органиче­ских соединений, в молекулах которых имеет­ся бензольное кольцо.

Этот вид изомерии возможен при наличии двух замести­телей в бензольном кольце. В зависимости от расположения заместителей в бензольном кольце различают орто-, мета- и пара-изомерию. Так, например, если в бензольном кольце имеется два заместителя - радикал метил и гидроксильная группа, то такое вещество называется крезолом. И в зави­симости от расположения этих групп в бензольном кольце существует три различных вещества:

Следует учесть, что многие соединения, имеющие одну и ту же молекулярную формулу, могут отличаться между собой различными видами изомерии, например:

Эти изомерные вещества отличаются одновременно изометрией углеродной цепи и изометрией положения функциональной группы – NH 2 .

III. Например, из молекулы этанола натрий вытесняет только один атом водорода. Следовательно, этот атом водорода более подвижен.

Отсюда можно вывести структурную формулу этанола:

H – C – C – H

Наоборот, зная структурную формулу этанола, можно предвидеть, что натрий будет вытеснять только один атом водорода, который связан с атомом кислорода.

Изучая свойства глюкозы, мы убедились, что в ее молекуле пять групп – он и одна альдегидная группа. Наоборот, зная структурную формулу глюкозы, можно предвидеть, что глюкоза будет проявлять свойства альдегидов и спиртов.

IV. Химические свойства фенола обусловлены наличием в его молекуле гидроксильной группы и бензального ядра, которые взаимно влияют друг на друга. Наличие гидроксильной группы предопределяет сходство фенола со спиртами:

1. Сходство, сходное со свойствами спиртов:

2C 6 H 5 OH + 2 Na → 2C 6 H 5 ONa + H 2

2. Свойство, отличающееся от свойств спиртов:

C 6 H 5 OH + NaOH → C 6 H 5 ONa + H 2 O


Реакция бромирования

4. Реакция нитрования


Влияние бензольного ядра на гидроксильную группу обуславливает большую подвижность ее водородного атома. Поэтому фенол, в отличие от спиртов, реагирует со щелочами, т.е. обладает свойствами слабых кислот. Его иногда называют карболовой кислотой. Это объясняется тем, что бензольное ядро оттягивает к себе электроны кислородного атома гидроксильной группы. Чтобы компенсировать это, атом кислорода сильнее притягивает к себе электронную плотность от атома водорода. Вследствие этого кавалентная связь между атомами кислорода и водорода становится более полярной, а атом водорода – более подвижным. Гидроксильная группа в свою очередь придает атомам водорода большую подвижность в положении 2, 4, 6. Это один из многих примеров, подтверждающих тезис теории А.М. Бутлерова о взаимном влиянии атомов в молекулах.

Химические свойства анилина обусловлены наличием в его молекуле аминогруппы - NH 2 и бензольного ядра. Анилин более слабое основание. Чтобы ответить на этот вопрос, нужно вспомнить о взаимном влиянии атомов и атомных групп в молекулах. Как и в молекулах фенола (об этом говорилось раньше) бензольное ядро несколько оттягивает свободную электронную пару от атома азота аминогруппы. Вследствие этого электронная плотность на атоме азота в молекуле анилина уменьшается и он слабее притягивает к себе протоны, т.е. основные свойства анилина ослабляются. Важнейшие свойства анилина:

1. Реагирует с кислотами с образованием солей:

C 6 H 5 – NH 2 + HCl → C 6 H 5 NH 3 Cl

2. Образовавшиеся соли реагируют со щелочами и снова выделяются анилин:

C 6 H 5 – NH 3 Cl+ NaOH → C 6 H 5 NH 2 + Na Cl + H 2 O

3. Энергично участвует в реакциях замещения, например реагирует с бромной водой с образованием 2, 4, 6 – триброманилина:


Взаимное влияние атомов в молекулах галогенопроизводных углеводород.

Самое характерное химическое свойство предельных углеводородов – реакции замещения. Примером такой реакции является взаимодействие предельных углеводородов с галогенами. Аналогично с галогенами реагируют и другие предельные углеводороды:

CH 3 -CH 3 +Cl 2 → CH 3 -CH 2 -Cl+HCl

Галогенопроизводные углеводороды обладают некоторыми особенностями. Согласно теории А.М. Бутлерова, это объясняется взаимным влиянием атомов и атомных групп в химических соединениях. С точки зрения современных представлений об электронных облаках и их взаимном перекрывании, с учетом электроотрицательности химических элементов взаимное влияние атомов и атомных групп, например в метилхиориде, объясняется так. У атомов хлора электроотрицательность больше, чем у атомов углерода. Поэтому электронная плотность связи смещена от атома углерода в сторону атома хлора. Вследствие этого атом хлора приобретает частичный отрицательный заряд, а атом углерода – частичный положительный заряд. Приобретаемые частичные заряды обозначаются δ+ и δ- :

Влияние атома хлора распространяется не только на атом углерода, но и на атомы водорода. Из-за этого электронная плотность атомов водорода смещается в сторону атома углерода и химические связи между атомами водорода и углерода становится более полярными. В результате атомы водорода в молекуле метилхлорида оказываются менее прочно связанными с атомом углерода и легче замещаются на хлор, чем первый атом водорода в молекуле метана. Из-за смещения электронных плотностей от атома водорода к атому углерода значение положительного заряда последнего уменьшается. Поэтому ковалентная связь между атомами углерода и хлора становится менее полярной и более прочной.

С точки зрения ионного механизма сущность правила В.В. Марковникова при взаимодействии пропилена с бромоводородом объясняется следующим образом: в молекуле пропилена в результате сдвига электронной плотности второй атом углерода, который связан с метилрадикалом заряжен более положительно, чем первый.

Значение электроотрицательности у атомов углерода больше, чем у атомов водорода. Поэтому третий атом углерода метильной группы в результате сдвига электронной плотности от трех атомов водорода приобретает относительно больший отрицательный заряд, чем другие атомы углерода. Этот избыточный отрицательный заряд в свою очередь смещает подвижные П-электронные облака от второго к первому атому углерода. В результате такого сдвига первый атом углерода приобретает больший отрицательный заряд, а второй становится более положительным. В результате атом водорода (+) присоединяется к атому углерода (-), а галоген (-) – к атому углерода (+).

Бензол очень стоек к окислению. В отличие от него ароматические углеводороды с боковыми цепями окисляются относительно легко.

1. При действии энергичных окислителей (K Mn O 4) на гомолоне бензола окислению подвергаются только боковые цепи. Если, например, в пробирку налить 2-3 мл толуола, затем добавить к нему раствор перманганата калия и нагреть, то можно заметить, что фиолетовая окраска раствора постепенно обесцвечивается. Это происходит потому, что по действием перманганата калия метильная группа толуола окисляется и превращается в группу

O
//
- C
\
OH
O
//

C 6 H 5 -CH 3 +3O → C 6 H 5 -C + H 2 O

\
OH

Известно, что метан и другие предельные углеводороды весьма устойчивы к действию окислителей. Однако метильная группа в молекуле толуола окисляется сравнительно легко. Это объясняется влиянием бензольного кольца. Из приведенных примеров реакций замещения и окисления следует, что не только метильная группа влияет на бензольное кольцо, но и бензольное кольцо влияет на метильную группу, т.е. их влияние зависимо.

Характерные химические свойства предельных одноатомных и многоатомных спиртов, фенола

Предельные одноатомные и многоатомные спирты

Спиртами (или алканолами) называются органические вещества, молекулы которых содержат одну или несколько гидроксильных групп (групп $—ОН$), соединенных с углеводородным радикалом.

По числу гидроксильных групп (атомности) спирты делятся на:

— одноатомные, например:

${CH_3-OH}↙{метанол(метиловый спирт)}$ ${CH_3-CH_2-OH}↙{этанол(этиловый спирт)}$

двухатомные (гликоли) , например:

${OH-CH_2-CH_2-OH}↙{этандиол-1,2(этиленгликоль)}$

${HO-CH_2-CH_2-CH_2-OH}↙{пропандиол-1,3}$

трехатомные , например:

По характеру углеводородного радикала выделяют следующие спирты:

предельные , содержащие в молекуле лишь предельные углеводородные радикалы, например:

непредельные , содержащие в молекуле кратные (двойные и тройные) связи между атомами углерода, например:

${CH_2=CH-CH_2-OH}↙{пропен-2-ол-1 (аллиловый спирт)}$

ароматические , т.е. спирты, содержащие в молекуле бензольное кольцо и гидроксильную группу, связанные друг с другом не непосредственно, а через атомы углерода, например:

Органические вещества, содержащие в молекуле гидроксильные группы, связанные непосредственно с атомом углерода бензольного кольца, существенно отличаются по химическим свойствам от спиртов и поэтому выделяются в самостоятельный класс органических соединений — фенолы. Например:

Существуют и полиатомные (многоатомные) спирты, содержащие более трех гидроксильных групп в молекуле. Например, простейший шестиатомный спирт гексаол (сорбит):

Номенклатура и изомерия

При образовании названий спиртов к названию углеводорода, соответствующего спирту, добавляют родовой суффикс -ол. Цифрами после суффикса указывают положение гидроксильной группы в главной цепи, а префиксами ди-, три-, тетра- и т. д. — их число:

В нумерации атомов углерода в главной цепи положение гидроксильной группы приоритетно перед положением кратных связей:

Начиная с третьего члена гомологического ряда, у спиртов появляется изомерия положения функциональной группы (пропанол-1 и пропанол-2), а с четвертого — изомерия углеродного скелета (бутанол-1, 2-метилпропанол-1). Для них характерна и межклассовая изомерия — спирты изомерны простым эфирам:

${CH_3-CH_2-OH}↙{этанол}$ ${CH_3-O-CH_3}↙{диметиловый эфир}$

спиртов

Физические свойства.

Спирты могут образовывать водородные связи как между молекулами спирта, так и между молекулами спирта и воды.

Водородные связи возникают при взаимодействии частично положительно заряженного атома водорода одной молекулы спирта и частично отрицательно заряженного атома кислорода другой молекулы. Именно благодаря водородным связям между молекулами спирты имеют аномально высокие для своей молекулярной массы температуры кипения. Так, пропан с относительной молекулярной массой $44$ при обычных условиях является газом, а простейший из спиртов — метанол, имея относительную молекулярную массу $32$, в обычных условиях — жидкость.

Низшие и средние члены ряда предельных одноатомных спиртов, содержащие от $1$ до $11$ атомов углерода, — жидкости. Высшие спирты (начиная с $С_{12}Н_{25}ОН$) при комнатной температуре — твердые вещества. Низшие спирты имеют характерный алкогольный запах и жгучий вкус, они хорошо растворимы в воде. По мере увеличения углеводородного радикала растворимость спиртов в воде понижается, а октанол уже не смешивается с водой.

Химические свойства.

Свойства органических веществ определяются их составом и строением. Спирты подтверждают общее правило. Их молекулы включают в себя углеводородные и гидроксильные радикалы, поэтому химические свойства спиртов определяются взаимодействием и влиянием друг на друга этих групп. Характерные для данного класса соединений свойства обусловлены наличием гидроксильной группы.

1. Взаимодействие спиртов со щелочными и щелочноземельными металлами. Для выявления влияния углеводородного радикала на гидроксильную группу необходимо сравнить свойства вещества, содержащего гидроксильную группу и углеводородный радикал, с одной стороны, и вещества, содержащего гидроксильную группу и не содержащего углеводородный радикал, — с другой. Такими веществами могут быть, например, этанол (или другой спирт) и вода. Водород гидроксильной группы молекул спиртов и молекул воды способен восстанавливаться щелочными и щелочноземельными металлами (замещаться на них):

$2Na+2H_2O=2NaOH+H_2$,

$2Na+2C_2H_5OH=2C_2H_5ONa+H_2$,

$2Na+2ROH=2RONa+H_2$.

2. Взаимодействие спиртов с галогеноводородами. Замещение гидроксильной группы на галоген приводит к образованию галогеналканов. Например:

$C_2H_5OH+HBr⇄C_2H_5Br+H_2O$.

Данная реакция обратима.

3. Межмолекулярная дегидратация спиртов — отщепление молекулы воды от двух молекул спирта при нагревании в присутствии водоотнимающих средств:

В результате межмолекулярной дегидратации спиртов образуются простые эфиры. Так, при нагревании этилового спирта с серной кислотой до температуры от $100$ до $140°С$ образуется диэтиловый (серный) эфир:

4. Взаимодействие спиртов с органическими и неорганическими кислотами с образованием сложных эфиров (реакция этерификации ):

Реакция этерификации катализируется сильными неорганическими кислотами.

Например, при взаимодействии этилового спирта и уксусной кислоты образуется уксусноэтиловый эфир — этилацетат :

5. Внутримолекулярная дегидратация спиртов происходит при нагревании спиртов в присутствии водоотнимающих средств до более высокой температуры, чем температура межмолекулярной дегидратации. В результате образуются алкены. Эта реакция обусловлена наличием атома водорода и гидроксильной группы при соседних атомах углерода. В качестве примера можно привести реакцию получения этена (этилена) при нагревании этанола выше $140°С$ в присутствии концентрированной серной кислоты:

6. Окисление спиртов обычно проводят сильными окислителями, например, дихроматом калия или перманганатом калия в кислой среде. При этом действие окислителя направляется на тот атом углерода, который уже связан с гидроксильной группой. В зависимости от природы спирта и условий проведения реакции могут образовываться различные продукты. Так, первичные спирты окисляются сначала в альдегиды , а затем в карбоновые кислоты:

При окислении вторичных спиртов образуются кетоны:

Третичные спирты достаточно устойчивы к окислению. Однако в жестких условиях (сильный окислитель, высокая температура) возможно окисление третичных спиртов, которое происходит с разрывом углерод-углеродных связей, ближайших к гидроксильной группе.

7. Дегидрирование спиртов. При пропускании паров спирта при $200-300°С$ над металлическим катализатором, например медью, серебром или платиной, первичные спирты превращаются в альдегиды, а вторичные — в кетоны:

Присутствием в молекуле спирта одновременно нескольких гидроксильных групп обусловлены специфические свойства многоатомных спиртов , которые способны образовывать растворимые в воде ярко-синие комплексные соединения при взаимодействии со свежеполученным осадком гидроксида меди (II). Для этиленгликоля можно записать:

Одноатомные спирты не способны вступать в эту реакцию. Поэтому она является качественной реакцией на многоатомные спирты.

Фенол

Строение фенолов

Гидроксильная группа в молекулах органических соединений может быть связана с ароматическим ядром непосредственно, а может быть отделена от него одним или несколькими атомами углерода. Можно ожидать, что в зависимости от этого свойства, вещества будут существенно отличаться друг от друга из-за взаимного влияния групп атомов. И действительно, органические соединения, содержащие ароматический радикал фенил $С_6Н_5$—, непосредственно связанный с гидроксильной группой, проявляют особые свойства, отличные от свойств спиртов. Такие соединения называются фенолами.

Фенолы — органические вещества, молекулы которых содержат радикал фенил, связанный с одной или несколькими гидроксогруппами.

Так же как и спирты, фенолы классифицируют по атомности, т.е. по количеству гидроксильных групп.

Одноатомные фенолы содержат в молекуле одну гидроксильную группу:

Многоатомные фенолы содержат в молекулах более одной гидроксильной группы:

Существуют и другие многоатомные фенолы, содержащие три и более гидроксильные группы в бензольном кольце.

Познакомимся подробнее со строением и свойствами простейшего представителя этого класса — фенолом $С_6Н_5ОН$. Название этого вещества и легло в основу названия всего класса — фенолы.

Физические и химические свойства.

Физические свойства.

Фенол — твердое, бесцветное, кристаллическое вещество, $t°_{пл.}=43°С, t°_{кип.}=181°С$, с резким характерным запахом. Ядовит. Фенол при комнатной температуре незначительно растворяется в воде. Водный раствор фенола называют карболовой кислотой. При попадании на кожу он вызывает ожоги, поэтому с фенолом необходимо обращаться осторожно!

Химические свойства.

Кислотные свойства. Как уже было сказано, атом водорода гидроксильной группы обладает кислотным характером. Кислотные свойства у фенола выражены сильнее, чем у воды и спиртов. В отличие от спиртов и воды, фенол реагирует не только с щелочными металлами, но и со щелочами с образованием фенолятов :

Однако кислотные свойства у фенолов выражены слабее, чем у неорганических и карбоновых кислот. Так, например, кислотные свойства фенола примерно в $3000$ раз слабее, чем у угольной кислоты. Поэтому, пропуская через водный раствор фенолята натрия углекислый газ, можно выделить свободный фенол:

Добавление к водному раствору фенолята натрия соляной или серной кислоты также приводит к образованию фенола:

Качественная реакция на фенол.

Фенол реагирует с хлоридом железа (III) с образованием интенсивно окрашенного в фиолетовый цвет комплексного соединения.

Эта реакция позволяет обнаруживать его даже в очень ограниченных количествах. Другие фенолы, содержащие одну или несколько гидроксильных групп в бензольном кольце, также дают яркое окрашивание сине-фиолетовых оттенков в реакции с хлоридом железа (III).

Реакции бензольного кольца.

Наличие гидроксильного заместителя значительно облегчает протекание реакций электрофильного замещения в бензольном кольце.

1. Бромирование фенола. В отличие от бензола, для бромирования фенола не требуется добавления катализатора (бромида железа (III)).

Кроме того, взаимодействие с фенолом протекает селективно (избирательно): атомы брома направляются в орто- и параположения, замещая находящиеся там атомы водорода. Селективность замещения объясняется рассмотренными выше особенностями электронного строения молекулы фенола.

Так, при взаимодействии фенола с бромной водой образуется белый осадок 2,4,6-трибромфенола:

Эта реакция, так же, как и реакция с хлоридом железа (III), служит для качественного обнаружения фенола.

2. Нитрование фенола также происходит легче, чем нитрование бензола. Реакция с разбавленной азотной кислотой идет при комнатной температуре. В результате образуется смесь орто- и пара- изомеров нитрофенола:

При использовании концентрированной азотной кислоты образуется взрывчатое вещество — 2,4,6-тринитрофенол (пикриновая кислота):

3. Гидрирование ароматического ядра фенола в присутствии катализатора происходит легко:

4. Поликонденсация фенола с альдегидами , в частности с формальдегидом, происходит с образованием продуктов реакции — фенолформальдегидных смол и твердых полимеров.

Взаимодействие фенола с формальдегидом можно описать схемой:

Вы, наверное, заметили, что в молекуле димера сохраняются «подвижные» атомы водорода, а значит, возможно дальнейшее продолжение реакции при достаточном количестве реагентов:

Реакция поликонденсации, т.е. реакция получения полимера, протекающая с выделением побочного низкомолекулярного продукта (воды), может продолжаться и далее (до полного израсходования одного из реагентов) с образованием огромных макромолекул. Процесс можно описать суммарным уравнением:

Образование линейных молекул происходит при обычной температуре. Проведение же этой реакции при нагревании приводит к тому, что образующийся продукт имеет разветвленное строение, он твердый и нерастворим в воде. В результате нагревания фенолформальдегидной смолы линейного строения с избытком альдегида получаются твердые пластические массы с уникальными свойствами. Полимеры на основе фенолформальдегидных смол применяют для изготовления лаков и красок, пластмассовых изделий, устойчивых к нагреванию, охлаждению, действию воды, щелочей и кислот, обладающих высокими диэлектрическими свойствами. Из полимеров на основе фенолформальдегидных смол изготавливают наиболее ответственные и важные детали электроприборов, корпуса силовых агрегатов и детали машин, полимерную основу печатных плат для радиоприборов. Клеи на основе фенолформальдегидных смол способны надежно соединять детали самой различной природы, сохраняя высочайшую прочность соединения в очень широком диапазоне температур. Такой клей применяется для крепления металлического цоколя ламп освещения к стеклянной колбе. Теперь вам понятно, почему фенол и продукты на его основе находят широкое применение.

Характерные химические свойства альдегидов, предельных карбоновых кислот, сложных эфиров

Альдегиды и кетоны

Альдегиды — органические вещества, молекулы которых содержат карбонильную группу , соединенную с атомом водорода и углеводородным радикалом.

Общая формула альдегидов имеет вид:

В простейшем альдегиде — формальдегиде — роль углеводородного радикала играет второй атом водорода:

Карбонильную группу, связанную с атомом водорода, называют альдегидной:

Органические вещества, в молекулах которых карбонильная группа связана с двумя углеводородными радикалами, называют кетонами.

Очевидно, общая формула кетонов имеет вид:

Карбонильную группу кетонов называют кетогруппой.

В простейшем кетоне — ацетоне — карбонильная группа связана с двумя метильными радикалами:

Номенклатура и изомерия

В зависимости от строения углеводородного радикала, связанного с альдегидной группой, различают предельные, непредельные, ароматические, гетероциклические и другие альдегиды:

В соответствии с номенклатурой ИЮПАК названия предельных альдегидов образуются от названия алкана с тем же числом атомов углерода в молекуле с помощью суффикса -аль. Например:

Нумерацию атомов углерода главной цепи начинают с атома углерода альдегидной группы. По этому альдегидная группа всегда располагается при первом атоме углерода, и указывать ее положение нет необходимости.

Наряду с систематической номенклатурой используют и тривиальные названия широко применяемых альдегидов. Эти названия, как правило, образованы от названий карбоновых кислот, соответствующих альдегидам.

Для названия кетонов по систематической номенклатуре кетогруппу обозначают суффиксом -он и цифрой, которая указывает номер атома углерода карбонильной группы (нумерацию следует начинать от ближайшего к кетогруппе конца цепи). Например:

Для альдегидов характерен только один вид структурной изомерии — изомерия углеродного скелета, которая возможна с бутаналя, а для кетонов — также и изомерия положения карбонильной группы. Кроме этого, для них характерна и межклассовая изомерия (пропаналь и пропанон).

Тривиальные названия и температуры кипения некоторых альдегидов.

Физические и химические свойства

Физические свойства.

В молекуле альдегида или кетона вследствие большей электроотрицательности атома кислорода по сравнению с углеродным атомом связь $С=О$ сильно поляризована за счет смещения электронной плотности $π$-связи к кислороду:

Альдегиды и кетоны — полярные вещества с избыточной электронной плотностью на атоме кислорода. Низшие члены ряда альдегидов и кетонов (формальдегид, уксусный альдегид, ацетон) растворимы в воде неограниченно. Их температуры кипения ниже, чем у соответствующих спиртов. Это связано с тем, что в молекулах альдегидов и кетонов, в отличие от спиртов, нет подвижных атомов водорода и они не образуют ассоциатов за счет водородных связей. Низшие альдегиды имеют резкий запах; у альдегидов, содержащих от четырех до шести атомов углерода в цепи, неприятный запах; высшие альдегиды и кетоны обладают цветочными запахами и применяются в парфюмерии.

Химические свойства

Наличие альдегидной группы в молекуле определяет характерные свойства альдегидов.

Реакции восстановления.

Присоединение водорода к молекулам альдегидов происходит по двойной связи в карбонильной группе:

Продуктом гидрирования альдегидов являются первичные спирты, кетонов — вторичные спирты.

Так, при гидрировании уксусного альдегида на никелевом катализаторе образуется этиловый спирт, при гидрировании ацетона — пропанол-2:

Гидрирование альдегидов — реакция восстановления, при которой понижается степень окисления атома углерода, входящего в карбонильную группу.

Реакции окисления.

Альдегиды способны не только восстанавливаться, но и окисляться. При окислении альдегиды образуют карбоновые кислоты. Схематично этот процесс можно представить так:

Из пропионового альдегида (пропаналя), например, образуется пропионовая кислота:

Альдегиды окисляются даже кислородом воздуха и такими слабыми окислителями, как аммиачный раствор оксида серебра. В упрощенном виде этот процесс можно выразить уравнением реакции:

Например:

Более точно этот процесс отражают уравнения:

Если поверхность сосуда, в котором проводится реакция, была предварительно обезжирена, то образующееся в ходе реакции серебро покрывает ее ровной тонкой пленкой. Поэтому эту реакцию называют реакцией «серебряного зеркала» . Ее широко используют для изготовления зеркал, серебрения украшений и елочных игрушек.

Окислителем альдегидов может выступать и свежеосажденный гидроксид меди (II). Окисляя альдегид, $Cu^{2+}$ восстанавливается до $Cu^+$. Образующийся в ходе реакции гидроксид меди (I) $CuOH$ сразу разлагается на оксид меди (I) красного цвета и воду:

Эта реакция, так же, как и реакция «серебряного зеркала», используется для обнаружения альдегидов.

Кетоны не окисляются ни кислородом воздуха, ни таким слабым окислителем, как аммиачный раствор оксида серебра.

Отдельные представители альдегидов и их значение

Формальдегид (метаналь, муравьиный альдегид $HCHO$) — бесцветный газ с резким запахом и температурой кипения $-21С°$, хорошо растворим в воде. Формальдегид ядовит! Раствор формальдегида в воде ($40%$) называют формалином и применяют для дезинфекции. В сельском хозяйстве формалин используют для протравливания семян, в кожевенной промышленности — для обработки кож. Формальдегид используют для получения уротропина — лекарственного вещества. Иногда спрессованный в виде брикетов уротропин применяют в качестве горючего (сухой спирт). Большое количество формальдегида расходуется при получении фенолформальдегидных смол и некоторых других веществ.

Уксусный альдегид (этаналь, ацетальдегид $CH_3CHO$) — жидкость с резким неприятным запахом и температурой кипения $21°С$, хорошо растворим в воде. Из уксусного альдегида в промышленных масштабах получают уксусную кислоту и ряд других веществ, он используется для производства различных пластмасс и ацетатного волокна. Уксусный альдегид ядовит!

Карбоновые кислоты

Вещества, содержащие в молекуле одну или несколько карбоксильных групп, называются карбоновыми кислотами.

Группа атомов называется карбоксильной группой , или карбоксилом.

Органические кислоты, содержащие в молекуле одну карбоксильную группу, являются одноосновными.

Общая формула этих кислот $RCOOH$, например:

Карбоновые кислоты, содержащие две карбоксильные группы, называются двухосновными. К ним относятся, например, щавелевая и янтарная кислоты:

Существуют и многоосновные карбоновые кислоты, содержащие более двух карбоксильных групп. К ним относится, например, трехосновная лимонная кислота:

В зависимости от природы углеводородного радикала карбоновые кислоты делятся на предельные, непредельные, ароматические.

Предельными, или насыщенными, карбоновыми кислотами являются, например, пропановая (пропионовая) кислота:

или уже знакомая нам янтарная кислота.

Очевидно, что предельные карбоновые кислоты не содержат $π$-связей в углеводородном радикале. В молекулах непредельных карбоновых кислот карбоксильная группа связана с ненасыщенным, непредельным углеводородным радикалом, например, в молекулах акриловой (пропеновой) $СН_2=СН—СООН$ или олеиновой $СН_3—(СН_2)_7—СН=СН—(СН_2)_7—СООН$ и других кислот.

Как видно из формулы бензойной кислоты, она является ароматической, так как содержит в молекуле ароматическое (бензольное) кольцо:

Номенклатура и изомерия

Общие принципы образования названий карбоновых кислот, как и других органических соединений, уже рассматривались. Остановимся подробнее на номенклатуре одно- и двухосновных карбоновых кислот. Название карбоновой кислоты образуется от названия соответствующего алкана (алкана с тем же числом атомов углерода в молекуле) с добавлением суффикса -ов- , окончания -ая и слова кислота. Нумерация атомов углерода начинается с карбоксильной группы. Например:

Количество карбоксильных групп указывается в названии префиксами ди-, три-, тетра- :

Многие кислоты имеют и исторически сложившиеся, или тривиальные, названия.

Названия карбоновых кислот.

Химическая формула Систематическое название кислоты Тривиальное название кислоты
$Н—СООН$ Метановая Муравьиная
$СН_3—СООН$ Этановая Уксусная
$СН_3—СН_2—СООН$ Пропановая Пропионовая
$СН_3—СН_2—СН_2—СООН$ Бутановая Масляная
$СН_3—СН_2—СН_2—СН_2—СООН$ Пентановая Валериановая
$СН_3—(СН_2)_4—СООН$ Гексановая Капроновая
$СН_3—(СН_2)_5—СООН$ Гептановая Энантовая
$НООС—СООН$ Этандиовая Щавелевая
$НООС—СН_2—СООН$ Пропандиовая Малоновая
$НООС—СН_2—СН_2—СООН$ Бутандиовая Янтарная

После знакомства с многообразным и интересным миром органических кислот рассмотрим более подробно предельные одноосновные карбоновые кислоты.

Понятно, что состав этих кислот выражается общей формулой $С_nН_{2n}О_2$, или $С_nН_{2n+1}СООН$, или $RCOOH$.

Физические и химические свойства

Физические свойства.

Низшие кислоты, т.е. кислоты с относительно небольшой молекулярной массой, содержащие в молекуле до четырех атомов углерода, — жидкости с характерным резким запахом (вспомните запах уксусной кислоты). Кислоты, содержащие от $4$ до $9$ атомов углерода, — вязкие маслянистые жидкости с неприятным запахом; содержащие более $9$ атомов углерода в молекуле — твердые вещества, не растворяющиеся в воде. Температуры кипения предельных одноосновных карбоновых кислот увеличиваются с ростом числа атомов углерода в молекуле и, следовательно, с ростом относительной молекулярной массы. Так, например, температура кипения муравьиной кислоты равна $100.8°С$, уксусной — $118°С$, пропионовой — $141°С$.

Простейшая карбоновая кислота — муравьиная $НСООН$, имея небольшую относительную молекулярную массу $(M_r(HCOOH)=46)$, при обычных условиях является жидкостью с температурой кипения $100.8°С$. В то же время бутан $(M_r(C_4H_{10})=58)$ в тех же условиях газообразен и имеет температуру кипения $-0,5°С$. Это несоответствие температур кипения и относительных молекулярных масс объясняется образованием димеров карбоновых кислот, в которых две молекулы кислоты связаны двумя водородными связями:

Возникновение водородных связей становится понятным при рассмотрении строения молекул карбоновых кислот.

Молекулы предельных одноосновных карбоновых кислот содержат полярную группу атомов — карбоксил и практически неполярный углеводородный радикал. Карбоксильная группа притягивается молекулами воды, образуя с ними водородные связи:

Муравьиная и уксусная кислоты растворимы в воде неограниченно. Очевидно, что с увеличением числа атомов в углеводородном радикале растворимость карбоновых кислот снижается.

Химические свойства.

Общие свойства, характерные для класса кислот (как органических, так и неорганических), обусловлены наличием в молекулах гидроксильной группы, содержащей сильную полярную связь между атомами водорода и кислорода. Рассмотрим эти свойства на примере растворимых в воде органических кислот.

1. Диссоциация с образованием катионов водорода и анионов кислотного остатка:

$CH_3-COOH⇄CH_3-COO^{-}+H^+$

Более точно этот процесс описывает уравнение, учитывающее участие в нем молекул воды:

$CH_3-COOH+H_2O⇄CH_3COO^{-}+H_3O^+$

Равновесие диссоциации карбоновых кислот смещено влево; подавляющее большинство их — слабые электролиты. Тем не менее, кислый вкус, например, уксусной и муравьиной кислот объясняется диссоциацией на катионы водорода и анионы кислотных остатков.

Очевидно, что присутствием в молекулах карбоновых кислот «кислого» водорода, т.е. водорода карбоксильной группы, обусловлены и другие характерные свойства.

2. Взаимодействие с металлами , стоящими в электрохимическом ряду напряжений до водорода: $nR-COOH+M→(RCOO)_{n}M+{n}/{2}H_2$

Так, железо восстанавливает водород из уксусной кислоты:

$2CH_3-COOH+Fe→(CH_3COO)_{2}Fe+H_2$

3. Взаимодействие с основными оксидами с образованием соли и воды:

$2R-COOH+CaO→(R-COO)_{2}Ca+H_2O$

4. Взаимодействие с гидроксидами металлов с образованием соли и воды (реакция нейтрализации):

$R—COOH+NaOH→R—COONa+H_2O$,

$2R—COOH+Ca(OH)_2→(R—COO)_{2}Ca+2H_2O$.

5. Взаимодействие с солями более слабых кислот с образованием последних. Так, уксусная кислота вытесняет стеариновую из стеарата натрия и угольную из карбоната калия:

$CH_3COOH+C_{17}H_{35}COONa→CH_3COONa+C_{17}H_{35}COOH↓$,

$2CH_3COOH+K_2CO_3→2CH_3COOK+H_2O+CO_2$.

6. Взаимодействие карбоновых кислот со спиртами с образованием сложных эфиров — реакция этерификации (одна из наиболее важных реакций, характерных для карбоновых кислот):

Взаимодействие карбоновых кислот со спиртами катализируется катионами водорода.

Реакция этерификации обратима. Равновесие смещается в сторону образования сложного эфира в присутствии водоотнимающих средств и при удалении эфира из реакционной смеси.

В реакции, обратной этерификации, которая называется гидролизом сложного эфира (взаимодействие сложного эфира с водой), образуются кислота и спирт:

Очевидно, что реагировать с карбоновыми кислотами, т.е. вступать в реакцию этерификации, могут и многоатомные спирты, например глицерин:

Все карбоновые кислоты (кроме муравьиной) наряду с карбоксильной группой содержат в молекулах углеводородный остаток. Безусловно, это не может не сказаться на свойствах кислот, которые определяются характером углеводородного остатка.

7. Реакции присоединения по кратной связи — в них вступают непредельные карбоновые кислоты. Например, реакция присоединения водорода — гидрирование . Для кислоты, содержащей в радикале одну $π$-связь, можно записать уравнение в общем виде:

$C_{n}H_{2n-1}COOH+H_2{→}↖{катализатор}C_{n}H_{2n+1}COOH.$

Так, при гидрировании олеиновой кислоты образуется предельная стеариновая кислота:

${C_{17}H_{33}COOH+H_2}↙{\text"олеиновая кислота"}{→}↖{катализатор}{C_{17}H_{35}COOH}↙{\text"стеариновая кислота"}$

Непредельные карбоновые кислоты, как и другие ненасыщенные соединения, присоединяют галогены по двойной связи. Так, например, акриловая кислота обесцвечивает бромную воду:

${CH_2=CH—COOH+Br_2}↙{\text"акриловая(пропеновая)кислота"}→{CH_2Br—CHBr—COOH}↙{\text"2,3-дибромпропановая кислота"}.$

8. Реакции замещения (с галогенами) — в них способны вступать предельные карбоновые кислоты. Например, при взаимодействии уксусной кислоты с хлором могут быть получены различные хлорпроизводные кислоты:

$CH_3COOH+Cl_2{→}↖{Р(красный)}{CH_2Cl-COOH+HCl}↙{\text"хлоруксусная кислота"}$,

$CH_2Cl-COOH+Cl_2{→}↖{Р(красный)}{CHCl_2-COOH+HCl}↙{\text"дихлоруксусная кислота"}$,

$CHCl_2-COOH+Cl_2{→}↖{Р(красный)}{CCl_3-COOH+HCl}↙{\text"трихлоруксусная кислота"}$

Отдельные представители карбоновых кислот и их значение

Муравьиная (метановая) кислота ХЦООХ — жидкость с резким запахом и температурой кипения $100.8°С$, хорошо растворима в воде. Муравьиная кислота ядовита, при попадании на кожу вызывает ожоги! Жалящая жидкость, выделяемая муравьями, содержит эту кислоту. Муравьиная кислота обладает дезинфицирующим свойством и поэтому находит свое применение в пищевой, кожевенной и фармацевтической промышленности, медицине. Она используется при крашении тканей и бумаги.

Уксусная (этановая) кислота $CH_3COOH$ — бесцветная жидкость с характерным резким запахом, смешивается с водой в любых cоотношениях. Водные растворы уксусной кислоты поступают в продажу под названием уксуса ($3-5%$-ный раствор) и уксусной эссенции ($70-80%$-ный раствор) и широко используются в пищевой промышленности. Уксусная кислота — хороший растворитель многих органических веществ и поэтому используется при крашении, в кожевенном производстве, в лакокрасочной промышленности. Кроме этого, уксусная кислота является сырьем для получения многих важных в техническом отношении органических соединений: например, на ее основе получают вещества, используемые для борьбы с сорняками, — гербициды.

Уксусная кислота является основным компонентом винного уксуса, характерный запах которого обусловлен именно ею. Она — продукт окисления этанола и образуется из него при хранении вина на воздухе.

Важнейшими представителями высших предельных одноосновных кислот являются пальмитиновая $C_{15}H_{31}COOH$ и стеариновая $C_{17}H_{35}COOH$ кислоты. В отличие от низших кислот, эти вещества твердые, плохо растворимы в воде.

Однако их соли — стеараты и пальмитаты — хорошо растворимы и обладают моющим действием, поэтому их еще называют мылами. Понятно, что эти вещества производят в больших масштабах. Из непредельных высших карбоновых кислот наибольшее значение имеет олеиновая кислота $C_{17}H_{33}COOH$, или $CH_3 — (CH_2)_7 — CH=CH —(CH_2)_7COOH$. Это маслоподобная жидкость без вкуса и запаха. Широкое применение в технике находят ее соли.

Простейшим представителем двухосновных карбоновых кислот является щавелевая (этандиовая) кислота $HOOC—COOH$, соли которой встречаются во многих растениях, например в щавеле и кислице. Щавелевая кислота — это бесцветное кристаллическое вещество, хорошо растворяется в воде. Она применяется при полировке металлов, в деревообрабатывающей и кожевенной промышленности.

Сложные эфиры

При взаимодействии карбоновых кислот со спиртами (реакция этерификации) образуются сложные эфиры:

Эта реакция обратима. Продукты реакции могут взаимодействовать друг с другом с образованием исходных веществ — спирта и кислоты. Таким образом, реакция сложных эфиров с водой — гидролиз сложного эфира — обратна реакции этерификации. Химическое равновесие, устанавливающееся при равенстве скоростей прямой (этерификация) и обратной (гидролиз) реакций, может быть смещено в сторону образования эфира присутствием водоотнимающих средств.

Жиры — производные соединения, которые представляют собой сложные эфиры глицерина и высших карбоновых кислот.

Все жиры, как и другие сложные эфиры, подвергаются гидролизу:

При проведении гидролиза жира в щелочной среде $(NaOH)$ и в присутствии кальцинированной соды $Na_2CO_3$ он протекает необратимо и приводит к образованию не карбоновых кислот, а их солей, которые называются мылами. Поэтому гидролиз жиров в щелочной среде называются омылением.