Плоскость в пространстве – необходимые сведения. Плоскость. Плоскость задается тремя произвольными точками, не принадле­жащими одной прямой Различные способы задания плоскости

Положение плоскости в пространстве может быть определено на чертеже одним из следующих способов:

1. Тремя точками, не лежащими на одной прямой (рис. 35 ).

2. Прямой и точкой, не лежащей на этой прямой (рис. 36 ).

3. Двумя пересекающимися прямыми (рис. 37) .

4. Двумя параллельными прямыми (рис. 38 ).

5. Плоской фигурой (рис. 39 ).

6. Следами (рис. 40, 41 ).

7. Параметрами плоскости.

Следы плоскости

Следом плоскости называется линия пересечения плоскости с плоскостью проекций. След плоскости обозначается той же буквой, что и плоскость с подстрочным знаком, соответствующим имени плоскости проекций, с которой пересекается данная. Если плоскость (назовем ее P ) не параллельна, какой-либо плоскости проекций, то она пересекает все три плоскости проекций и, следовательно, имеет три следа – горизонтальный P H , фронтальный P V и профильный P W (рис. 40, 41 ). Как и любая прямая, любой след плоскости имеет три проекции, но, для облегчения чтения эпюра, принято обозначать только ту проекцию следа, которая не совпадает с осью проекций. Положение любого следа плоскости, как и любой прямой, определяется положением двух ее точек. Для следов плоскости такими точками могут являться точки, называемые точками схода следов , то есть точки, в которых плоскость пересекает оси координат – P x , P y , P z . Численные значения координат x , y , и z точек схода следов называются параметрами плоскости .

Положение плоскости в пространстве определяется тремя точками, не лежащими на одной прямой, прямой и точкой, взятой вне прямой, двумя пересекающимися прямыми и двумя параллельными прямыми. Соответственно плоскость на чертеже (рис. 3.1) может быть задана проекциями трех точек, не лежащих на одной прямой (а), прямой и точки, взятой вне прямой (б), двух пересекающихся прямых (в), двух параллельных прямых (г). Проекции любой плоской фигуры также могут служить заданием плоскости на чертеже; например, см. на рис. 3.10 изображение плоскости проекциями треугольника.

Положение плоскости относительно плоскостей проекций

Плоскость относительно плоскостей проекций может занимать следующие положения: 1) не перпендикулярно к плоскостям проекций; 2) перпендикулярно к одной плоскости проекций; 3) перпендикулярно к двум плоскостям проекций.

Плоскость, не перпендикулярную ни к одной из плоскостей проекций, называют плоскостью общего положения (см. рис. 3.1).

Второе и третье положения плоскостей являются частными случаями. Плоскости в этих положениях называют проецирующими плоскостями.

Плоскость, перпендикулярная одной плоскости проекций. Наглядное изображение плоскости а, заданной треугольником ABC и перпендикулярной плоскости ∏!, приведено на рис. 3.2, ее чертеж – на рис. 3.3. Такую плоскость называют горизонтально проецирующей .

Наглядное изображение плоскости β, заданной параллелограммом ABCD , перпендикулярной фронтальной плоскости проекций, приведено на рис. 3.4, ее чертеж – на рис. 3.5. Такую плоскость называют фронтально проецирующей .

Чертеж плоскости в виде треугольника с проекциями А "В"С" А "В"С", A ""B tnC"", перпендикулярной профильной плоскости проекций, показан на рис. 3.6. Такую плоскость называют профильно-проецирующей.

Следы плоскостей. Линию пересечения плоскости с плоскостью проекций называют следом . Линия пересечения некоторой плоско-

сти а, заданной треугольником АВС, с плоскостью π, обозначена a", a с плоскостью π2 – а" (см. рис. 3.2).

Линию пересечения плоскости с плоскостью π, называют горизонтальным следом, с плоскостью π2 – фронтальным следом, с плоскостью π, – профильным следом.

Для плоскости а, перпендикулярной плоскости π, горизонтальный след а" (см. рис. 3.2,3.3) располагается под углом к оси х, соответствующем углу наклона этой плоскости к фронтальной плоскости проекций, а фронтальный след а" – перпендикулярно оси х.

Аналогично для некоторой плоскости β, перпендикулярной плоскости π2 (см. рис. 3.4,3.5), фронтальный след β" располагается под углом к оси х, соответствующему углу наклона этой плоскости к плоскости ∏), а горизонтальный след β" – перпендикулярно оси х.

На чертежах тот след, который перпендикулярен оси проекций, обычно, когда она не участвует в построениях, не изображают.

Свойство проекций геометрических элементов, лежащих в проецирующих плоскостях (см. § 1.1, ∏. 1, в). Проецирующая плоскость изображается прямой

линией на той плоскости проекций, к которой она перпендикулярна. Следовательно, и любая замкнутая геометрическая фигура, лежащая в проецирующей плоскости, проецируется на эту плоскость проекций в отрезок прямой линии.

Плоскости, перпендикулярные двум плоскостям проекций. Если плоскость перпендикулярна двум плоскостям проекций, то она параллельна третьей плоскости проекций. Такую плоскость называют горизонтальной (параллельная плоскости π,), фронтальной (параллельная плоскости π2) и профильной (параллельная плоскости π3).

Примеры их наглядных изображений и чертежей приведены на рис. 3.7, а, б (фронтальная плоскость у и принадлежащая ей точка А), на рис. 3.8, а, б (горизонтальная плоскость β и принадлежащая ей точка В), на рис. 3.9, а, б (профильная плоскость а и принадлежащая ей точка Q.

Плоскость – это одна из наиболее важных фигур в планиметрии, поэтому нужно хорошо понимать, что она из себя представляет. В рамках этого материала мы сформулируем само понятие плоскости, покажем, как ее обозначают на письме, и введем необходимые обозначения. Затем мы рассмотрим это понятие в сравнении с точкой, прямой или другой плоскостью и разберем варианты их взаимного расположения. Все определения будут проиллюстрированы графически, а нужные аксиомы сформулированы отдельно. В последнем пункте мы укажем, как правильно задать плоскость в пространстве несколькими способами.

Yandex.RTB R-A-339285-1

Плоскость представляет собой одну из простейших фигур в геометрии наравне с прямой и точкой. Ранее мы уже объясняли, что точка и прямая размещаются на плоскости. Если эту плоскость разместить в трехмерном пространстве, то мы получим точки и прямые в пространстве.

В жизни представление о том, что такое плоскость, нам могут дать такие объекты, как поверхность пола, стола или стены. Но нужно учитывать, что в жизни их размеры ограничены, а здесь понятие плоскости связано с бесконечностью.

Прямые и точки, размещенные в пространстве, мы будем обозначать аналогично размещенным на плоскости – с помощью строчных и прописных латинских букв (B , A , d , q и др.) Если в условиях задачи у нас есть две точки, которые расположены на прямой, то можно выбрать такие обозначения, которые будут соответствовать друг другу, например, прямая D B и точки D и B .

Чтобы обозначить плоскость на письме, традиционно используются маленькие греческие буквы, например, α , γ или π .

Если нам нужно графическое отображение плоскости, то обычно для этого используется замкнутое пространство произвольной формы или параллелограмм.

Плоскость принято рассматривать вместе с прямыми, точками, другими плоскостями. Задачи с этим понятием обычно содержат некоторые варианты их расположения друг относительно друга. Рассмотрим отдельные случаи.

Первый способ взаимного расположения заключается в том, что точка расположена на плоскости, т.е. принадлежит ей. Можно сформулировать аксиому:

Определение 1

В любой плоскости есть точки.

Такой вариант расположения также называется прохождением плоскости через точку. Чтобы обозначить это на письме, используется символ ∈ . Так, если нам нужно записать в буквенном виде, что через точку A проходит некая плоскость π , то мы пишем: A ∈ π .

Если некая плоскость задана в пространстве, то число точек, принадлежащих ей, является бесконечным. А какого минимального количества точек будет достаточно для определения плоскости? Ответом на этот вопрос будет следующая аксиома.

Определение 2

Через три точки, которые не расположены на одной прямой, проходит единственная плоскость.

Зная это правило, можно ввести новое обозначение плоскости. Вместо маленькой греческой буквы мы можем использовать названия точек, лежащих в ней, например, плоскость А В С.

Другой способ взаимного расположения точки и плоскости можно выразить с помощью третьей аксиомы:

Определение 3

Можно выделить как минимум 4 точки, которые не будут находиться в одной плоскости.

Выше мы уже отмечали, что для обозначения плоскости в пространстве будет достаточно трех точек, а четвертая может находиться как в ней, так и вне ее. Если нужно обозначить отсутствие принадлежности точки к заданной плоскости на письме, то используется знак ∉ . Запись вида A ∉ π правильно читается как «точка A не принадлежит плоскости π »

Графически последнюю аксиому можно представить так:

Самый простой вариант – прямая находится в плоскости. Тогда в ней будут расположены как минимум две точки этой прямой. Сформулируем аксиому:

Определение 4

Если хотя бы две точки заданной прямой находятся в некоторой плоскости, это значит, что все точки этой прямой расположены в данной плоскости.

Чтобы записать принадлежность прямой некой плоскости, используем тот же символ, что и для точки. Если мы напишем « a ∈ π », то это будет означать, что у нас есть прямая a , которая расположена в плоскости π . Изобразим это на рисунке:

Второй вариант взаимного расположения – это когда прямая пересекает плоскость. В таком случае у них будет всего одна общая точка – точка пересечения. Для записи такого расположения в буквенном виде используем символ ∩ . Например, выражение a ∩ π = M читается как «прямая a пересекает плоскость π в некоторой точке M ». Если у нас есть точка пересечения, значит, у нас есть и угол, под которым прямая пересекает плоскость.

Графически этот вариант расположения выглядит так:

Если у нас есть две прямые, одна из которых лежит в плоскости, а другая ее пересекает, то они являются перпендикулярными друг другу. На письме это обозначается символом ⊥ . Особенности такой позиции мы рассмотрим в отдельной статье. На рисунке это расположение будет выглядеть следующим образом:

Если мы решаем задачу, в которой есть плоскость, нам необходимо знать, что из себя представляет нормальный вектор плоскости.

Определение 5

Нормальный вектор плоскости – это такой вектор, который лежит на перпендикулярной прямой по отношению к плоскости и не равен при этом нулю.

Примеры нормальных векторов плоскости показаны на рисунке:

Третий случай взаимного расположения прямой и плоскости – это их параллельность. В таком случае ни одной общей точки у них нет. Для указания таких отношений на письме используется символ ∥ . Если у нас есть запись вида a ∥ π , то ее следует читать так: «прямая a является параллельной плоскости ∥ ». Подробнее этот случай мы разберем в статье про параллельные плоскости и прямые.

Если прямая расположена внутри плоскости, то она делит ее на две равные или неравные части (полуплоскости). Тогда такая прямая будет называться границей полуплоскостей.

Любые 2 точки, расположенные в одной полуплоскости, лежат по одной сторону от границы, а две точки, принадлежащие разным полуплоскостям, лежат по разную сторону от границы.

1. Наиболее простой вариант – две плоскости совпадают друг с другом. Тогда они будут иметь минимум три общие точки.

2. Одна плоскость может пересекать другую. При этом образуется прямая. Выведем аксиому:

Определение 6

Если две плоскости пересекаются, то между ними образуется общая прямая, на которой лежат все возможные точки пересечения.

На графике это будет выглядеть так:

В таком случае между плоскостями образуется угол. Если он будет равен 90 градусам, то плоскости будут перпендикулярны друг другу.

3. Две плоскости могут быть параллельными друг другу, то есть не иметь ни одной точки пересечения.

Если у нас есть не две, а три и больше пересекающихся плоскостей, то такую комбинацию принято называть пучком или связкой плоскостей. Подробнее об этом мы напишем в отдельном материале.

В этом пункте мы посмотрим, какие существуют способы задания плоскости в пространстве.

1. Первый способ основан на одной из аксиом: единственная плоскость проходит через 3 точки, не лежащие на одной прямой. Следовательно, мы можем задать плоскость, просто указав три таких точки.

Если у нас есть прямоугольная система координат в трехмерном пространстве, в которой задана плоскость с помощью этого способа, то мы можем составить уравнение этой плоскости (подробнее см, соответствующую статью). Изобразим данный способ на рисунке:

2. Второй способ – задание плоскости с помощью прямой и точки, не лежащей на этой прямой. Это следует из аксиомы о плоскости, проходящей через 3 точки. См. рисунок:

3. Третий способ заключается в задании плоскости, которая проходит через две пересекающиеся прямые (как мы помним, в таком случае тоже есть только одна плоскость.) Проиллюстрируем способ так:

4. Четвертый способ основан на параллельных прямых. Вспомним, какие прямые называются параллельными: они должны лежать в одной плоскости и не иметь ни одной точки пересечения. Получается, что если мы укажем в пространстве две такие прямые, то мы тем самым сможем определить для них ту самую единственную плоскость. Если у нас есть прямоугольная система координат в пространстве, в которой уже задана плоскость этим способом, то мы можем вывести уравнение такой плоскости.

На рисунке этот способ будет выглядеть так:

Если мы вспомним, что такое признак параллельности, то сможем вывести еще один способ задания плоскости:

Определение 7

Если у нас есть две пересекающиеся прямые, которые лежат в некоторой плоскости, которые параллельны двум прямым в другой плоскости, то и сами эти плоскости будут параллельны.

Таким образом, если мы зададим точку, то мы сможем задать плоскость, которая проходит через нее, и ту плоскость, которой она будет параллельна. В таком случае мы тоже можем вывести уравнение плоскости (об этом у нас есть отдельный материал).

Вспомним одну теорему, изученную в рамках курса по геометрии:

Определение 8

Через определенную точку пространства может проходить только одна плоскость, которая будет параллельна заданной прямой.

Это значит, что можно задать плоскость путем указания конкретной точки, через которую она будет проходить, и прямой, которая будет перпендикулярна по отношению к ней. Если плоскость задана этим способом в прямоугольной системе координат, то мы можем составить уравнение плоскости для нее.

Также мы можем указать не прямую, а нормальный вектор плоскости. Тогда можно будет сформулировать общее уравнение.

Мы рассмотрели основные способы, с помощью которых можно задать плоскость в пространстве.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Введение

Из курса планиметрии мы знаем, что плоскость - это множество, элементами которого являются точки и в котором выполняется система аксиом планиметрии, описывающая свойства точек и прямы.

Пространство - это множество, элементами которого являются точки и в котором выполняется система аксиом стереометрии, описывающая свойства точек, прямых и плоскостей. Система аксиом стереометрии дает описание свойств пространства и основных его элементов. Понятия «точка», «прямая» и «плоскость» принимаются без определений: их описание и свойства содержатся в аксиомах. С другой стороны, понятия «точка», «прямая», «плоскость» имеют наглядный смысл, отраженный на чертежах и рисунках.

Изучение пространства приводит к необходимости расширить систему аксиом планиметрии и рассмотреть новую группу аксиом, в которых выражены свойства взаимного расположения точек, прямых и плоскостей, что особенно важно для нас, в пространстве.

Цель реферата - получить наглядное представление о пространстве и способах расположения плоскостей в пространстве.

Для выполнения этой цели поставлены следующие задачи:

  • - рассмотреть способы задания плоскостей в пространстве,
  • - рассмотреть основные аксиомы стереометрии;
  • - изучить возможные варианты взаимного расположения плоскостей в пространстве,
  • - сформулировать основные признаки и свойства взаимного расположения плоскостей в пространстве;

Способы задания плоскости

Изучение пространства приводит к необходимости расширить систему аксиом.

Рассмотрим аксиому R1. В пространстве существуют плоскости. В каждой плоскости пространства выполняются все аксиомы планиметрии. Эта аксиома дает нам право рассматривать в любой плоскости пространства отрезки, прямые со всеми их свойствами, которые изучались в планиметрии. Например, если прямая а и не принадлежащая ей точка М лежат в некоторой плоскости б, то в этой плоскости можно провести через точку М прямую, параллельную прямой а, и притом только одну.

В аксиоме R3 говорится: какова бы не была плоскость, существуют точки, принадлежащие этой плоскости, и точки, не принадлежащие ей. Данной аксиомой утверждается, что для любой плоскости в пространстве можно выбрать любое количество точек в этой плоскости, равно как и сколько угодно точек вне её. В случае, если точка А л7+ежит в (принадлежит) плоскости б, то записывают: А б и говорят, что плоскость б проходит через точку А. Если точка А не принадлежит плоскости б, то записывают: А б и говорят, что плоскость б не проходит через точку А.

Плоскость в пространстве однозначно определяется:

Тремя точками, не лежащими на прямой. Аксиома R2 (аксиома плоскости) гласит: Через любые три точки, не принадлежащие одной прямой, можно провести плоскость, и притом только одну. Плоскость, которая проходит через точки А, В и С, не принадлежащие одной прямой (С АВ), обозначается символически (АВС); если этой плоскостью является плоскость б, то пишут б = (АВС) или (АВС)= б. Стол, имеющий три ножки, не может качаться на плоском полу. Его устойчивость объясняется тем, что концы трех его ножек (три точки) принадлежат одной плоскости - плоскости пола, но не принадлежат одной прямой. Плохо сделанный стол на четырех ножках качается на плоском полу, и под одну из его ножек что-нибудь стараются подложить.

Прямой и точкой, не лежащей на прямой.

По теореме 1 через любую прямую и не принадлежащую ей точку можно провести плоскость, и притом только одну.

Теорема 2. Через любые две пересекающиеся прямые можно провести плоскость, и притом только одну.

Если прямая проходит через две точки плоскости, то она лежит в этой плоскости

Теорема 3. Через две параллельные прямые можно провести единственную плоскость.

Здесь из принятых нами аксиом стереометрии мы получим важные теоремы и следствия о прямых и плоскостях. Сами по себе они достаточно очевидны. Рассмотрим их доказательства, которые показывают, как какое-либо утверждение можно строго вывести из аксиом со всеми необходимыми ссылками.

2.1 Задание прямой двумя точками

Доказательство. В п. 1.1 уже доказано, что через каждые две точки А, В проходит прямая а.

Докажем, что эта прямая только одна. Прямая а лежит в некоторой плоскости а. Допустим, что, кроме прямой а, через точки А, В проходит ещё прямая b (рис. 31). По аксиоме 3 прямая, имеющая с плоскостью две общие точки, лежит в этой плоскости. Так как прямая b имеет с а общие точки А и B, то b лежит в плоскости α.

Рис. 31

Но в плоскости а выполняется планиметрия, и, следовательно, через две точки А и B проходит только одна прямая. Значит, прямые а и b совпадают. Таким образом, через точки А и В проходит только одна прямая.

Следствие. В пространстве (как и на плоскости) две различные прямые не могут иметь более одной общей точки.

Две прямые, имеющие единственную общую точку, называются пересекающимися.

Замечание. Не всегда предложение, справедливое в планиметрии, верно и в стереометрии. Так, например, в плоскости через две данные точки N, S проходит лишь одна окружность с диаметром NS, а в пространстве таких окружностей бесконечное множество - в каждой плоскости, проходящей через точки N, S, лежит такая окружность (рис. 32, а).

Рис. 32

Но прямая, проходящая через точки N, S в пространстве, лишь одна. Эта общая прямая всех плоскостей, проходящих через точки N, S (рис. 32, б).

Доказав, что в пространстве через каждые две точки проходит единственная прямая, мы можем задавать прямую в пространстве любой парой её точек, не заботясь о том, в какой плоскости эта прямая лежит. Прямая, проходящая через точки А, B, обозначается (АВ).

Аналогичное верно и для отрезков: каждые две точки в пространстве служат концами единственного отрезка.

2.2 Задание плоскости тремя точками

Доказательство. Пусть точки А, B, С не лежат на одной прямой. По аксиоме плоскости через эти точки проходит некоторая плоскость а (см. рис. 6). Докажем, что она только одна.

Допустим, что через точки А, B, С проходит ещё одна плоскость (3, отличная от а. Плоскости а и р имеют общие точки (например, точку А). По аксиоме 2 пересечением плоскостей α и β является их общая прямая. На этой прямой лежат все общие точки плоскостей α и β, а значит, точки A, B, С. Но это противоречит условию теоремы, так как согласно ему A, B, С не лежат на одной прямой. Итак, через точки А, В, С проходит лишь одна плоскость α.

Плоскость, проходящую через три точки А, В, С, не лежащие на одной прямой, обозначают (ABC).

Легко проиллюстрировать теорему 2. Например, положение двери фиксируется двумя дверными петлями и замком.

2.3 Задание плоскости прямой и точкой и двумя прямыми

Доказательство. Пусть даны прямая а и не лежащая на ней точка А. Возьмём на прямой а две точки B и С (рис. 33). Точка А не лежит с ними на одной прямой, так как через точки B и С проходит лишь одна прямая - это прямая а, а точка А не лежит на ней по условию теоремы.

Рис. 33

Через точки А, B, С, не лежащие на одной прямой, проходит (по теореме 2) единственная плоскость АBС. Прямая а имеет с ней две общие точки B и С и, значит, по аксиоме 3 лежит в ней. Таким образом, плоскость АBС и есть плоскость, проходящая через прямую а и точку А.

Единственность такой плоскости докажем способом от противного.

Пусть есть ещё одна плоскость β, содержащая прямую а и точку А. Тогда она содержит точки B и С. По теореме 2 она должна совпадать с плоскостью АBС. Полученное противоречие и доказывает единственность.

Вот иллюстрация этой теоремы: поворачивая переплёт книги, вы в каждый момент пальцами фиксируете его положение.

Доказательство. Пусть прямые а и b пересекаются в точке А. Возьмём на прямой b другую точку B (рис. 34). По теореме 3 через прямую а и точку В проходит плоскость а. Согласно аксиоме 3 прямая Ь лежит в этой плоскости, так как имеет с ней две общие точки А и В. Значит, плоскость а проходит через прямые а и b. Единственность такой плоскости докажите самостоятельно способом от противного.

Рис. 34

Теперь мы знаем три способа задания плоскости:

  1. тремя точками, не лежащими на одной прямой;
  2. прямой и не лежащей на ней точкой;
  3. двумя пересекающимися прямыми.

Вопросы для самоконтроля

  1. Какие вы знаете способы задания прямой в пространстве?
  2. Какие вы знаете способы задания плоскости?