Мейоз стадии значение. Деление клеток. Митоз и мейоз, фазы деления. Мейоз — прямое деление

Мейоз - способ деление эукариотических клеток, при котором из одной диплоидной формируется 4 гаплоидные. В результате мейоза число хромосом уменьшается в 2 раза. поэтому его еще называют редукционным делением (правильнее редукционным называть только первое деление мейоза, а второе - эквационное). Мейозом образуются половые клетки животных и споры высших растений (из которых развиваются гаметофиты - половое поколение, образующее гаметы путем митоза).
При мейозе происходит два быстро следующих друг за другом деления, каждое из которых состоит из 4 уже известных нам фаз: профазы, метафазы, анафазы и телофазы; между двумя делениями может быть короткая интерфаза, но никогда не происходит репликации ДНК.

Ход мейоза.

Перед началом мейоза (как и перед началом митоза) происходит удвоение наследственной информации клетки, т.е. ДНК реплицируется, и хромосомный набор имеет формулу 2n4с.
первое деление мейоза - редукционное.


Профаза 1. 2n4c . Самая длительная фаза мейоза. Ее часто делят на пять стадий (лептотена, зиготена, пахитена, диплотена и диакинез). Хромосомы укорачиваются и становятся видимыми как обособленные структуры. Гомологичные хромосомы, происходящие из ядер материнской и отцовской гамет, приближаются одна к другой и конъюгируют . Они одинаковой длины, их центромеры занимают одинаковое положение, и они обычно содержат одинаковое число генов, расположенных в одной и той же линейной последовательности. Пары конъюгирующих гомологичных хромосом называют бивалентами . Биваленты укорачиваются и утолщаются, становятся ясно видны.

Гомологичные хромосомы, составляющие бивалент, частично разделяются, становится видно, что каждая состоит из двух хроматид. Хромосомы остаются соединенными в нескольких точках – хиазмах . В каждой хиазме происходит обмен участками хроматид в результате разрывов и соединений, в которых участвуют две из имеющихся в хиазме четырех нитей. В результате гены из одной хромосомы оказываются связанными с генами другой хромосомы, что приводит к новым генным комбинациям в образующихся хроматидах. Этот процесс называется кроссинговер . После кроссинговера гомологичные хромосомы не расходятся, а остаются прочно связанными. В клетке центриоли мигрируют к полюсам, ядрышки и ядерная мембрана разрушаются, образуются нити веретена деления.

Метафаза 1. 2 n4c. Биваленты выстраиваются в экваториальной плоскости, образуя метафазную пластинку . Их центромеры ведут себя как единые структуры и организуют прикрепленные к ним нити веретена деления. В результате тянущего усилия каждый бивалент оказывается на экваторе, а обе его центромеры равноудалены от экватора (снизу и сверху).


Анафаза 1. 1 n2c * 2 (к каждому полюсу клетки!) Имеющиеся у каждого бивалента две центромеры еще не делятся, но сестринские хроматиды уже не примыкают одна к другой. Нити веретена тянут центромеры, каждая из которых связана с двумя хроматидами, к противоположным полюсам веретена. В результате хромосомы разделяются на два гаплоидных набора, попадающих в дочерние клетки. Гомологичные хромосомы каждой пары расходятся к полюсам независимо от хромосом другой пары.

Телофаза 1 . 1 n2c в каждой образующейся клетке. Расхождение гомологичных центромер и связанных с ними хроматид к противоположным полюсам означает завершение первого деления мейоза. Число хромосом в одном наборе стало вдвое меньше, но находящиеся на каждом полюсе хромосомы состоят из двух хроматид. Вследствие кроссинговера эти хроматиды генетически неидентичны. Веретена и их нити обычно исчезают. Иногда после этой фазы хромосомы деспирализуются и возникает ядерная оболочка. Затем происходит деление цитоплазмы. Иногда не наблюдается этой фазы, и клетка переходит от анафазы1 к профазе2.

Второе деление мейоза - эквационное.

Интерфаза 2. 1n2c в каждой клетке. Эта стадия обычна только в животных клетках; продолжительность варьирует. Фаза S отсутствует, и дальнейшей репликации ДНК не происходит. Синтезируются необходимые вещества, главным образом, АТФ.

Профаза 2. 1 n2c. Если не было телофазы1, то этой стадии тоже нет (обратные процессы). Ядерные мембраны и ядрышки разрушаются, хроматиды укорачиваются и утолщаются. Центриоли перемещаются к противоположным полюсам, появляются нити веретена. Хроматиды располагаются таким образом, что их длинные оси перпендикулярны оси веретена первого деления мейоза.

Метафаза 2. 1 n2c. Центромеры ведут себя как двойные структуры. Они организуют нити веретена, направленные к обоим полюсам, и таким образом выстраиваются по экватору веретена.

Анафаза 2. 1 n1c * 2 (к каждому полюсу клетки!) . Центромеры делятся, и нити веретена деления растаскивают их к противоположным полюсам. Центромеры тянут за собой отделившиеся друг от друга хроматиды, которые теперь называются хромосомами.

Телофаза 2. 1 n1c (в каждой клетке). Сходна с телофазой митоза. Хромосомы деспирализуются, растягиваются и после этого плохо различимы. Нити веретена исчезают, а центриоли реплицируются. Вокруг каждого ядра, которое содержит теперь гаплоидное число хромосом, образуется ядерная мембрана. Далее следует деление цитоплазмы. Образуется 4 дочерние клетки.



Значение мейоза:

1. Половое размножение . Предотвращение удвоения числа хромосом в каждом последующем поколении.

2. Генетическая изменчивость . Мейоз создает возможности для возникновения в гаметах новых генных комбинаций.


Сходства митоза и мейоза:

- способы деления эукариотических клеток;

- одинаковые фазы: профаза, метафаза, анафаза, телофаза;

- перед клеточным делением происходит удвоение ДНК, спирализация хромосом.

Черты отличия митоза и мейоза


Митоз



На этом этапе существования клетки биваленты разделяются. Имеет место их случайное и независимое расхождение к противоположным полюсам, причем гомологичные двухроматидные хромосомы отходят к разным полюсам. Хромосомы при расхождении перекомбинируются.

Рисунок 1. Процесс расхождения гомологичных хромосом к противоположным полюсам клетки

Анафаза 1. Какой метафорой можно ее описать?

Представьте себе развод между двумя супругами, которые утратили то общее, что их объединяло в семью. Мужчина (одна гомологичная хромосома) с парой рук (парой хроматид) уходит от жены. В биологии мы называем этот «развод» расхождением гомологичных двухроматидных хромос ом к противоположным полюсам клетки.

Для чего природа создала анафазу 1? Ради того, чтобы каждая гомологичная хромосома получила шанс самореализации внутри отдельной клетки. Анафаза 1 - это «эгоистический» принцип, который разделяет пару хромосом, заставляет каждую гомологичную хромосому жить отдельно ради собственных целей.

Но в этом не вся роль анафазы 1.Она существует с целью составленияновых комбинаций хромосом.

Есть такое понятие в биологии - независимое расхождение хромосом в анафазе 1 мейоза 1 . Почему независимое? Продолжим нашу метафору «развода». В каждой стране множество семейных пар разводятся (как расходятся друг от друга хромосомы). Но развод каждой пары происходит независимо от других, он оформляется в отдельных государственных учреждениях. Так и каждая пара гомологичныххромосом расходится независимо.

А теперь представьте, как много комбинаций можно составить из разведенных супругов. Мы не знаем, в какую точку планеты человек поедет после развода, с кем он там познакомится, на ком вновь женится: американец ли на русской, или камбоджиец на финке. Точно также в анафазе появляются новые сочетания хромосом. Как это происходит?

У каждой из гомологичных хромосом при расхождении есть только два варианта: идти либо к одному полюсу клетки, либо к другому. Напоминаю, что сейчас мы говорим только об одной паре хромосом. Но пар много! Скажем, у человека их 23, и каждая пара при расхождении распадается, образуя две хромосомы. Эти две хромосомы устремляются к противоположным полюсам, как если бы разведенные супруги ринулись друг от друга - один на запад, в США, другой на восток, в Китай. А там - ах! - уже много разведенных россиян, французов и кенийцев. Количество будущих комбинаций огромно.

Применим метафору к хромосомам. При расхождении разных пар хромосом к полюсам мы также получим разнообразные комбинации хромосом . Пар хромосом много, и все они несут разные аллели генов. Комбинируясь у полюсов клетки, они создают интересные сочетания. Вот еще одна причина комбинативной изменчивости . Ее суть теперь уже не в комбинации генов, как было при кроссинговере. Здесь вы говорим о новых экстраординарных сочетаниях хромосом.

Объясните, почему независимое расхождение хромосом в анафазе мейоза 1 обеспечивает появление новых комбинаций хромосом в половой клетке?

Ниже я привел рисунок, на котором показано появление новой комбинации хромосом в анафазе 1, и подробный комментарий к нему. Хочу сделать акцент на том, что в будущей клетке, образованной в конце мейоза 1, будут комбинироваться именно хромосомы из разных пар гомологичных хромосом. Они довольно уникальны и поэтому могут сформировать причудливые новые комбинации генов в клетке.

Рисунок 2. Процесс независимого расхождения гомологичных хромосом в анафазе 1 мейоза 1


При независимом расхождении хромосом в анафазе 1 материнские и отцовские хромосомы расходятся к полюсам дочерних клеток в случайном порядке. В результате у полюсов равновероятно могут появиться разные сочетания хромосом. Например, у нас есть одна пара гомологичных хромосом с аллелями «А» и «а», и вторая пара с аллелями «В» и «b». Пусть аллель «А» отвечает за карий цвет глаз, «а» за голубой. Аллель «В» - за темные волосы, «b» - за светлые.

Представим, что в данной клетке всего две пары хромосом . Каким образом они могут распределиться к полюсам?

1. К одному полюсу пойдут «А» и «В», к другому «а» и «b».

Здесь можно получить два результата:

а) хромосомы «А» и «B», попадая в одну клетку, могут в мейозе 2 дать гамету с геном карих глаз и с геном темных волос;

б) хромосомы «а» и «b», попадая в одну клетку, могут в мейозе 2 дать гамету с геном голубых глаз и с геном светлых волос.

2. К одному полюсу пойдут «А» и «b», к другому «а» и «В».

Здесь также два результата возможны:

а) хромосомы «А» и «b», попадая в одну клетку, могут в мейозе 2 дать гамету с геном карих глаз и с геном светлых волос;

б) хромосомы «а» и «В», попадая в одну клетку, могут в мейозе 2 дать гамету с геном голубых глаз, и с геном темных волос.

Каково количество хромосом и хроматид (молекул ДНК) в анафазе 1 мейоза 1?

В анафазе наши гипотетические «супруги», несмотря на «развод», все еще «живут» в одной квартире-клетке. Их двое (2n) и у них на двоих четыре руки (4с). По сути, в одной клетке все еще расположены две хромосомы и четыре хроматиды в них. Поэтому набор хромосом и количество ДНК не изменились.


Хочешь сдать экзамен на отлично? Жми сюда -

Клеточный цикл – это период жизни клетки от одного деления до другого. Состоит из интерфазы и периодов деления. Продолжительность клеточного цикла у разных организмов разная (у бактерий – 20-30 мин, у клеток эукариот – 10-80 ч).

Интерфаза

Интерфаза (от лат. inter – между, phases – появление) – это период между делениями клетки или от деления до ее гибели. Период от деления клетки до ее гибели характерен для клеток многоклеточного организма, которые после деления утратили способность к нему (эритроциты, нервные клетки и т. п.). Интерфаза занимает приблизительно 90 % времени клеточного цикла.

Интерфаза включает:

1) пресинтетический период (G 1) – начинаются интенсивные процессы биосинтеза, клетка растет, увеличивается в размерах. Именно в этом периоде до смерти остаются клетки многоклеточных организмов, которые утратили способность к делению;

2) синтетический (S) – происходит удвоение ДНК, хромосом (клетка становится тетраплоидной), удваиваются центриоли, если они есть;

3) постсинтетический (G 2) – в основном прекращаются процессы синтеза в клетке, происходит подготовка клетки к делению.

Деление клетки бывает прямым (амитоз) и непрямым (митоз, мейоз).

Амитоз

Амитоз – прямое деление клеток, при котором не образуется аппарат деления. Ядро делится вследствие кольцевой перетяжки. Не происходит равномерного распределения генетической информации. В природе амитозом делятся макронуклеусы (большие ядра) инфузорий, клетки плаценты у млекопитающих. Амитозом могут делиться клетки раковых опухолей.

Непрямое деление связано с образованием аппарата деления. В аппарат деления входят компоненты, которые обеспечивают равномерное распределение хромосом между клетками (веретено деления, центромеры, если есть – центриоли). Деление клетки условно можно разделить на деление ядра (кариокинез ) и деление цитоплазмы (цитокинез ). Последний начинается к концу деления ядра. Наиболее распространены в природе митоз и мейоз. Иногда встречается эндомитоз – непрямое деление, которое происходит в ядре без разрушения его оболочки.

Митоз

Митоз – это непрямое деление клетки, при котором из материнской образуются две дочерние клетки с идентичным набором генетической информации.

Фазы митоза:

1) профаза – происходит уплотнение хроматина (конденсация), хроматиды спирализируются и укорачиваются (становятся заметными в световой микроскоп), исчезают ядрышки и ядерная оболочка, образуется веретено деления, его нити прикрепляются к центромерам хромосом, центриоли делятся и расходятся к полюсам клетки;

2) метафаза – хромосомы максимально спирализированы и располагаются вдоль экватора (в экваториальной пластинке), гомологичные хромосомы лежат рядом;

3) анафаза – нити веретена деления сокращаются одновременно и растягивают хромосомы к полюсам (хромосомы становятся однохроматидными), самая короткая фаза митоза;

4) телофаза – хромосомы деспирализируются, образуются ядрышки, ядерная оболочка, начинается деление цитоплазмы.

Митоз характерен преимущественно для соматических клеток. Благодаря митозу сохраняется постоянство числа хромосом. Способствует увеличению числа клеток, поэтому наблюдается при росте, регенерации, вегетативном размножении.

Мейоз

Мейоз (от греч. мейозис – уменьшение) – это непрямое редукционное деление клетки, при котором из материнской образуются четыре дочерние, располагающие неидентичной генетической информацией.

Различают два деления: мейоз I и мейоз II. Интерфаза I сходна с интерфазой перед митозом. В постсинтетическом периоде интерфазы процессы синтеза белка не прекращаются и продолжаются в профазе первого деления.

Мейоз I:

профаза I – хромосомы спирализируются, ядрышко и ядерная оболочка исчезают, образуется веретено деления, гомологичные хромосомы сближаются и слипаются вдоль сестринских хроматид (как молния в замке) – происходит конъюгация , при этом образуются тетрады , или биваленты , образуется перекрест хромосом и обмен участками – кроссинговер , потом гомологичные хромосомы отталкиваются одна от другой, но остаются сцепленными в участках, где состоялся кроссинговер; процессы синтеза завершаются;

метафаза I – хромосомы располагаются вдоль экватора, гомологичные –двухроматидные хромосомы располагаются одна напротив другой по обе стороны экватора;

анафаза I – нити веретена деления одновременно сокращаются, растягивают по одной гомологичной двухроматидной хромосоме к полюсам;

телофаза I (если есть) – хромосомы деспирализируются, образуются ядрышко и ядерная оболочка, происходит распределение цитоплазмы (клетки, которые образовались, гаплоидны).

Интерфаза II (если есть): не происходит удвоения ДНК.

Мейоз II:

профаза II – уплотняются хромосомы, исчезают ядрышко и ядерная оболочка, образуется веретено деления;

метафаза II – хромосомы располагаются вдоль экватора;

анафаза II – хромосомы при одновременном сокращении нитей веретена деления расходятся к полюсам;

телофаза II – деспирализируются хромосомы, образуются ядрышко и ядерная оболочка, делится цитоплазма.

Мейоз происходит перед образованием половых клеток. Позволяет при слиянии половых клеток сохранять постоянство числа хромосом вида (кариотип). Обеспечивает комбинативную изменчивость.

Мейоз - это способ непрямого деления пер­вичных половых клеток (2п2с), в результате кото­рого образуются гаплоидные клетки (lnlc), чаще всего половые.

В отличие от митоза, мейоз состоит из двух последовательных делений клетки, каждому из которых предшествует интерфаза (рис. 2.53). Первое деление мейоза (мейоз I) называется редук­ционным, так как при этом количество хромосом уменьшается вдвое, а второе деление (мейозII) - эквационным, так как в его процессе количество хромосом сохраняется (см. табл. 2.5).

Интерфаза I протекает подобно интерфазе митоза. Мейоз I делится на четыре фазы: профа­зу I, метафазу I, анафазу I и телофазу I. В профа­зе I происходят два важнейших процесса - конъ­югация и кроссинговер. Конъюгация - это процесс слияния гомологичных (парных) хромосом по всей длине. Образовавшиеся в процессе конъюгации пары хромосом сохраняются до конца метафазы I.

Кроссинговер - взаимный обмен гомологичными участками го­мологичных хромосом (рис. 2.54). В результате кроссинговера хро­мосомы, полученные организмом от обоих родителей, приобретают новые комбинации генов, что обусловливает появление генетически разнообразного потомства. В конце профазы I, как и в профазе ми­тоза, исчезает ядрышко, центриоли расходятся к полюсам клетки, а ядерная оболочка распадается.

В метафазе I пары хромосом выстраиваются по экватору клетки, к их центромерам прикрепляются микротрубочки веретена деления.

В анафазе I к полюсам расходятся целые гомологичные хромосомы, состоящие из двух хро­матид.

В телофазе I вокруг скоплений хромосом у полюсов клетки образуются ядерные оболочки, формируются ядрышки.

Цитокинез I обеспечивает разделение цитоплазм дочерних клеток.

Образовавшиеся в результате мейоза I дочерние клетки (1n2с) генетически разнородны, по­скольку их хромосомы, случайным образом разошедшиеся к полюсам клетки, содержат неодина­ковые гены.

Интерфаза II очень короткая, так как в ней не происходит удвоения ДНК, то есть отсутствует S-период.

Мейоз II также делится на четыре фазы: профазу II, метафазу II, анафазу II и телофазу II. В профазе II протекают те же процессы, что и в профазе I, за исключением конъюгации и кроссинговера.

В метафазе II хромосомы располагаются вдоль экватора клетки.

В анафазе II хромосомы расщепляются в центромерах и к полюсам растягиваются уже хроматиды.

В телофазе II вокруг скоплений дочерних хромосом формируются ядерные оболочки и ядрышки.

После цитокинеза II генетическая формула всех четырех дочерних клеток - 1n1c, однако все они имеют различный набор генов, что является результатом кроссинговера и случайного со­четания хромосом материнского и отцовского организмов в дочерних клетках.

Мейоз - это деление в зоне созревания половых клеток , сопровождающееся уменьшением числа хромосом вдвое. Он состоит из двух последовательно идущих деле­ний, имеющих те же фазы, что и митоз. Однако, как показано в таблице «Сравнение митоза и мейоза», продолжительность отдельных фаз и происходящие в них процессы значительно отличаются от процессов, происходящих при митозе.

Эти отличия в основном состоят в следующем.

В мейозе профаза I более продолжительна. В ней происходит конъюгация(соединение гомологичных хромосом) и обмен генетической информацией. В анафазе Iцентроме­ры, скрепляющие хроматиды, не делятся, а к полюсам отходит одна из гомологмейоза Митоз и его фазы митоза и ичных хромосом. Интерфаза перед вторым делением очень короткая, в ней ДНК не синтезируется. Клетки (галиты), образующиеся в результате двух мейотических делений, содержат гаплоидный (одинарный) набор хромосом. Диплоидность восстанавливается при слиянии двух клеток - материнской и отцовской. Опло­дотворенную яйцеклетку называютзиготой.

Митоз, или непрямое деление, наиболее широко рас­пространен в природе. Митоз лежит в основе деления всех неполовых клеток (эпителиальных, мышечных, нервных, костных и др.). Митоз состоит из четырех последователь­ных фаз (см. далее таблицу). Благодаря митозу обеспечи­вается равномерное распределение генетической информа­ции родительской клетки между дочерними. Период жизни клетки между двумя митозами называют интерфазой. Она в десятки раз продолжительнее митоза. В ней совершается ряд очень важных процессов, предшествующих делению клетки: синтезируются молекулы АТФ и белков , удваивается каждая хромосома, образуя две сестринские хроматиды, скрепленные общей центромерой, увеличивается число основных органоидов цитоплазмы.

В профазе спиралируются и вследствие этого утолща­ются хромосомы, состоящие из двух сестринских хроматид, удерживаемых вместе центромерой. К концу профазы ядерная мембрана и ядрышки исчезают и хромосомы рас­средоточиваются по всей клетке, центриоли отходят к полюсам и образуют веретено деления. В метафазе проис­ходит дальнейшая спирализация хромосом. В эту фазу они наиболее хорошо видны. Их центромеры располагаются по экватору. К ним прикрепляются нити веретена деления.

В анафазе центромеры делятся, сестринские хроматиды отделяются друг от друга и за счет сокращения нитей веретена отходят к противоположным полюсам клетки.

В телофазе цитоплазма делится, хромосомы раскручи­ваются, вновь образуются ядрышки и ядерные мембраны. В животных клетках цитоплазма перешнуровывается, в растительных - в центре материнской клетки образуется перегородка. Так из одной исходной клетки (материнской) образу­ются две новые дочерние.

Мейоз и митоз

Таблица - Сравнение митоза и мейоза

1 деление

2 деление

Интерфаза

Набор хромосом 2n

Идет интенсивный синтез белков, АТФ и других органических веществ

Удваиваются хромосомы, каждая оказывается состоящей из двух сестринских хроматид, скрепленных общей центромерой.

Набор хромосом 2n Наблюдаются те же процессы, что и в митозе, но более продолжительна, особенно при обра­зовании яйцеклеток.

Набор хромосом гаплоидный (n). Синтез органических веществ отсутствует.

Непродолжительна, происходит спирализация хро­мосом, исчезают ядерная оболочка, ядрышко, образуется веретено деления

Более длительна. В начале фазы те же процессы, что и в митозе. Кроме того, происходит конъюгация хромосом, при которой гомологичные хромосомы сближаются по всей длине и скру­чиваются. При этом может происходить обмен генетической информацией (перекрест хромосом) -кроссинговер . Затем хромосомы расходятся.

Короткая; те же процессы, что и в митозе, но при nхромосом.

Метафаза

Происходит дальнейшая спирализация хромосом, их центромеры располагаются по экватору.

Происходят процессы, аналогичные тем, что и в митозе.

Центромеры, скрепляющие се­стринские хроматиды, делятся, каждая из них становится новой хромосомой и отходит к противоположным полюсам.

Центромеры не делятся. К противоположным полюсам отходит одна из гомологичных хро­мосом, состоящая из двух хроматид, скрепленных общей центромерой.

Происходит то же, что и в митозе, но при nхромосом.

Телофаза

Делится цитоплазма, образуются две дочерние клетки, каждая с диплоидным набором хромосом. Исчезает веретено деления, формируются ядрышки.

Длится недолго Гомологичные хро­мосомы попадают в разные клетки с гаплоидным набором хромосом. Цитоплазма делится не всегда.

Делится цитоплазма. После двух мейотических делений образуется 4 клетки с гаплоидным набором хромосом.

Клеточный цикл - это период существования клетки от момента её образования путем деления материнской клетки до собственного деления.

Длительность клеточного цикла эукариот

Длительность клеточного цикла у разных клеток варьируется. Быстро размножающиеся клетки взрослых организмов, такие как кроветворные или базальные клетки эпидермиса и тонкой кишки, могут входить в клеточный цикл каждые 12-36 ч. Короткие клеточные циклы (около 30 мин) наблюдаются при быстром дроблении яиц иглокожих , земноводных и других животных. В экспериментальных условиях короткий клеточный цикл (около 20 ч) имеют многие линии клеточных культур. У большинства активно делящихся клеток длительность периода между митозами составляет примерно 10-24 ч.

Фазы клеточного цикла эукариот

Клеточный цикл эукариот состоит из двух периодов:

Период клеточного роста, называемый «интерфаза », во время которого идет синтез ДНК и белков и осуществляется подготовка к делению клетки.

Периода клеточного деления, называемый «фаза М» (от слова mitosis - митоз ).

Интерфаза состоит из нескольких периодов:

G 1 -фазы (от англ. gap - промежуток), или фазы начального роста , во время которой идет синтез мРНК , белков , других клеточных компонентов;

S-фазы (от англ. synthesis - синтез), во время которой идет репликация ДНК клеточного ядра , также происходит удвоение центриолей (если они, конечно, есть).

G 2 -фазы, во время которой идет подготовка к митозу .

У дифференцировавшихся клеток, которые более не делятся, в клеточном цикле может отсутствовать G 1 фаза. Такие клетки находятся в фазе покоя G 0 .

Период клеточного деления (фаза М) включает две стадии:

-кариокинез (деление клеточного ядра);

-цитокинез (деление цитоплазмы).

В свою очередь, митоз делится на пять стадий.

Описание клеточного деления базируется на данных световой микроскопии в сочетании с микрокиносъемкой и на результатахсветовой и электронной микроскопии фиксированных и окрашенных клеток.

Регуляция клеточного цикла

Закономерная последовательность смены периодов клеточного цикла осуществляется при взаимодействии таких белков , какциклин-зависимые киназы и циклины . Клетки , находящиеся в G 0 фазе, могут вступать в клеточный цикл при действии на нихфакторов роста . Разные факторы роста, такие как тромбоцитарный , эпидермальный, фактор роста нервов, связываясь со своимирецепторами , запускают внутриклеточный сигнальный каскад, приводящий в итоге к транскрипции генов циклинов и циклин-зависимых киназ . Циклин-зависимые киназы становятся активными лишь при взаимодействии с соответствующими циклинами . Содержание различных циклинов в клетке меняется на протяжении всего клеточного цикла. Циклин является регуляторной компонентой комплекса циклин-циклин-зависимая киназа. Киназа же является каталитическим компонентом этого комплекса.Киназы не активны без циклинов . На разных стадиях клеточного цикла синтезируются разные циклины . Так, содержание циклина B в ооцитах лягушки достигает максимума к моменту митоза , когда запускается весь каскад реакций фосфорилирования , катализируемых комплексом циклин-В/циклин-зависимая киназа. К окончанию митоза циклин быстро разрушается протеиназами.

Контрольные точки клеточного цикла

Для определения завершения каждой фазы клеточного цикла необходимо наличие в нем контрольных точек. Если клетка «проходит» контрольную точку, то она продолжается «двигаться» по клеточному циклу. Если же какие-либо обстоятельства, например повреждение ДНК, мешают клетке пройти через контрольную точку, которую можно сравнить со своего рода контрольным пунктом, то клетка останавливается и другой фазы клеточного цикла не наступает по крайней мере до тех пор, пока не будут устранены препятствия, не позволявшие клетке пройти через контрольный пункт. Существует как минимум четыре контрольных точки клеточного цикла: точка в G1, где проверяется интактность ДНК, перед вхождением в S-фазу, сверочная точка в S-фазе, в которой проверяется правильность репликации ДНК, сверочная точка в G2, в которой проверяются повреждения, пропущенные при прохождении предыдущих сверочных точек, либо полученные на последующих стадиях клеточного цикла. В G2 фазе детектируется полнота репликации ДНК, и клетки, в которых ДНК недореплицирована, не входят в митоз. В контрольной точке сборки веретена деления проверяется, все ли кинетохоры прикреплены к микротрубочкам.

Нарушения клеточного цикла и образование опухолей

Увеличение синтеза белка p53 ведет к индукции синтеза белка p21 - ингибитора клеточного цикла

Нарушение нормальной регуляции клеточного цикла является причиной появления большинства твердых опухолей. В клеточном цикле, как уже говорилось, прохождение контрольных пунктов его возможно только в случае нормального завершения предыдущих этапов и отсутствия поломок. Для опухолевых клеток характерны изменения компонентов сверочных точек клеточного цикла. При инактивации сверочных точек клеточного цикла наблюдается дисфункция некоторых опухолевых супрессоров и протоонкогенов, в частности p53 , pRb , Myc иRas . Белок p53 является одним из факторов транскрипции, который инициирует синтез белка p21 , являющегося ингибитором комплекса CDK-циклин, что приводит к остановке клеточного цикла в G1 и G2 периоде. Таким образом клетка, у которой повреждена ДНК, не вступает в S-фазу. При мутациях, приводящих к потере генов белка p53, или при их изменениях, блокады клеточного цикла не происходит, клетки вступают в митоз, что приводит к появлению мутантных клеток, большая часть из которых нежизнеспособна, другая - дает начало злокачественным клеткам.

Деление клеток

Все клетки появляются путём деления родительских клеток. Большинству клеток свойственен клеточный цикл, состоящий из двух основных стадий: интерфазы и митоза.

Интерфаза состоит из трех этапов. В течение 4–8 часов после рождения клетка увеличивает свою массу. Некоторые клетки (например, нервные клетки мозга) навсегда остаются в этой стадии, у других же в течение 6–9 часов удваивается хромосомная ДНК. Когда масса клетки увеличивается в два раза, начинается митоз .

В стадии анафазы хромосомы перемещаются к полюсам клетки. Когда хромосомы достигают полюсов, начинается телофаза . Клетка делится надвое в экваториальной плоскости, нити веретена разрушаются, вокруг хромосом формируются ядерные мембраны. Каждая дочерняя клетка получает собственный набор хромосом и возвращается в стадию интерфазы. Весь процесс занимает около часа.

Процесс митоза может варьировать в зависимости от типа клетки. В растительной клетке отсутствуют центриоли, хотя веретено деления образуется. В грибных клетках митоз происходит внутри ядра, ядерная мембрана не распадается.

Наличие хромосом не является необходимым условием деления клетки. С другой стороны, один или несколько митозов могут останавливаться на стадии телофазы, в результате чего возникают многоядерные клетки (например, у некоторых водорослей).

Размножение при помощи митоза называют бесполым или вегетативным, а также клонированием . При митозе генетический материал родительских и дочерних клеток идентичен.

Мейоз , в отличие от митоза, является важным элементом полового размножения . При мейозе образуются клетки, содержащие лишь один набор хромосом, что делает возможным последующее слияние половых клеток (гамет) двух родителей. По сути, мейоз является разновидностью митоза. Он включает два последовательных деления клетки, однако хромосомы удваиваются только в первом из этих делений. Биологическая сущность мейоза заключается в уменьшении числа хромосом в два раза и образовании гаплоидных гамет (то есть гамет, имеющих по одному набору хромосом).

В результате мейотического деления у животных образуются четыре гаметы . Если мужские половые клетки имеют примерно одинаковые размеры, то при образовании яйцеклеток распределение цитоплазмы происходит очень неравномерно: одна клетка остаётся крупной, а три остальных настолько малы, что их почти целиком занимает ядро. Эти мелкие клетки служат лишь для размещения избыточного генетического материала.

Мужские и женские гаметы сливаются, образуя зиготу . Хромосомные наборы при этом объединяются (этот процесс называется сингамией ), в результате чего в зиготе восстанавливается удвоенный набор хромосом – по одному от каждого из родителей. Случайное расхождение хромосом и обмен генетическим материалом между гомологичными хромосомами приводят к возникновению новых комбинаций генов, повышая генетическое разнообразие. Образовавшаяся зигота развивается в самостоятельный организм.

В последнее время проводились эксперименты по искусственному слиянию клеток одного или разных видов. Наружные поверхности клеток склеивались вместе, а мембрана между ними разрушалась. Таким образом удалось получить гибридные клетки мыши и цыплёнка, человека и мыши. Однако при последующих делениях клетки теряли большинство хромосом одного из видов.

В других экспериментах клетка разделялась на компоненты, например, ядро, цитоплазму и мембрану. После этого компоненты различных клеток снова соединяли вместе, и в результате получалась живая клетка, состоящая из компонентов клеток разных видов. В принципе, опыты по сборке искусственных клеток могут оказаться первым шагом на пути к созданию новых форм жизни.