Как найти координаты вектора. Векторы для чайников. Действия с векторами. Координаты вектора. Простейшие задачи с векторами Как определяются координаты вектора

Необходимо определить вектор на плоскости или в пространстве, то есть дать информацию о его направлении и длине.

Координаты вектора

Пусть задана прямоугольная декартова система координат (ПДСК) $x O y$ и произвольный вектор $\overline{a}$, начало которого совпадает с началом системы координат (рис. 1).

Определение

Координатами вектора $\overline{a}$ называются проекции $a_{x}$ и $a_{y}$ данного вектора на оси $O x$ и $O y$ соответственно:

Величина $a_{x}$ называется абсциссой вектора $\overline{a}$, а число $a_{y}$ - его ординатой . То, что вектор $\overline{a}$ имеет координаты $a_{x}$ и $a_{y}$, записывается следующим образом: $\overline{a}=\left(a_{x} ; a_{y}\right)$.

Пример

Запись $\overline{a}=(5 ;-2)$ означает, что вектор $\overline{a}$ имеет следующие координаты: абсцисса равна 5, ордината равна -2.

Сумма двух векторов, заданных координатами

Пусть заданы $\overline{a}=\left(a_{x} ; a_{y}\right)$ и $\overline{b}=\left(b_{x} ; b_{y}\right)$, тогда вектор $\overline{c}=\overline{a}+\overline{b}$ имеет координаты $\left(a_{x}+b_{x} ; a_{y}+b_{y}\right)$ (рис. 2).

Определение

Чтобы найти сумму двух векторов , заданных своими координатами, надо сложить их соответствующие координаты.

Пример

Задание. Заданы $\overline{a}=(-3 ; 5)$ и $\overline{b}=(0 ;-1)$. Найти координаты вектора $\overline{c}=\overline{a}+\overline{b}$

Решение. $\overline{c}=\overline{a}+\overline{b}=(-3 ; 5)+(0 ;-1)=(-3+0 ; 5+(-1))=(-3 ; 4)$

Умножение вектора на число

Если задан $\overline{a}=\left(a_{x} ; a_{y}\right)$, то тогда вектор $m \overline{a}$ имеет координаты $m \overline{a}=\left(m a_{x} ; m a_{y}\right)$, здесь $m$ - некоторое число (рис. 3).

Пример

Задание. Вектор $\overline{a}=(3 ;-2)$. Найти координаты вектора 2$\overline{a}$

Решение. $2 \overline{a}=2 \cdot(3 ;-2)=(2 \cdot 3 ; 2 \cdot(-2))=(6 ;-4)$

Рассмотрим далее случай, когда начало вектора не совпадает с началом системы координат. Предположим, что в ПДСК заданы две точки $A\left(a_{x} ; a_{y}\right)$ и $B\left(b_{x} ; b_{y}\right)$. Тогда координаты вектора $\overline{A B}=\left(x_{1} ; y_{1}\right)$ находятся по формулам (рис. 4):

$x_{1}=b_{x}-a_{x}, y_{1}=b_{y}-a_{y}$

Определение

Чтобы найти координаты вектора , заданного координатами начала и конца, надо от координат конца отнять соответствующие координаты начала.

Пример

Задание. Найти координаты вектора $\overline{A B}$, если $A(-4 ; 2), B(1 ;-3)$

Решение. $\overline{A B}=(1-(-4) ;-3-2)=(5 ;-5)$

Направляющие косинусы

Определение

Направляющими косинусами вектора называются косинусы углов, образованных вектором с положительными направлениями осей координат.

Направление вектора однозначно задается направляющими косинусами. Для единичного вектора направляющие косинусы равны его координатам.

Если в пространстве задан вектор $\overline{a}=\left(a_{x} ; a_{y} ; a_{z}\right)$, то его направляющие косинусы вычисляются по формулам:

$\cos \alpha=\frac{a_{x}}{\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}}, \cos \beta=\frac{a_{y}}{\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}}, \cos \gamma=\frac{a_{z}}{\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}}$

Здесь $\alpha$, $\beta$ и $\gamma$ - углы, которые составляет вектор с положительными направлениями осей $O x$, $O y$ и $O z$ соответственно.

Координатами вектора

Величина называется абсциссой вектора , а число - его ординатой

Как образуется базис на плоскости

Как образуется базис в пространстве

Базисом векторного пространства называется упорядоченная максимальная линейно независимая система векторов из этого пространства.

Определение Система векторов a1, a2, . . . , an из векторного пространства V называется системой образующих этого пространства, если любой вектор из V линейно выражается через векторы a1, a2, . . . , an.

Упорядоченная система векторов является базисом векторного пространства V тогда и только тогда, когда она является линейно независимой системой образующих этого пространства

Что называется декартовым базисом

Если векторы e1, e2, e3 взаимно ортогональны и по модулю равны единице, то они называются ортами прямоугольной декартовой системы координат, а сам базис ортонормированным декартовым базисом.

Сформулировать свойства координат векторов в декартовом базисе

Что называется координатами точки

Расстояния точки от координатных плоскостей называют координатами точки.
Расстояние АА 1 точки от плоскости П 1 называют аппликатой точки и обозначают у А, расстояние АА 2 точки от плоскости П 2 - ординатой точки и обозначают - у А, расстояние АА 3 точки от плоскости П 3 - абсциссой точки и обозначают х А.
Очевидно, координата точки аппликата z A есть высота АА 1 , координата точки ордината у A - глубина АА 2 , координата точки абсцисса х А - широтаАА 3 .

Как вычисляются координаты вектора если известны координаты его конца и начала

Как вычислять расстояние между двумя точками если известны их координаты

Сама знаешь что АВ (x1-x2;y1-y2)
Расстояние между точками это длина вектора АВ.

Что такое направляющие косинусы

Направляющие косинусы вектора – это косинусы углов, которые вектор образует с положительными полуосями координат.

Направляющие косинусы однозначно задают направление вектора.

Что называется проекцией вектора на ось, доказать свойства проекций.

Проекцией вектора на ось l () называется длина его компоненты на ось l , взятая со знаком «плюс», если направление компоненты совпадает с направлением оси l , и со знаком «минус», если направление компоненты противоположно направлению оси.

Если = , то полагают = .

Теорема I Проекция вектора на ось l равна произведению его модуля на косинус угла между этим вектором и осью l.

Доказательство. Так как вектор = свободный, то можно предположить, что начало его О лежит на оси l (рис. 34).

Если угол острый, то направление компоненты = , вектора совпадает с направлением оси l (рис 34,а).

В этом случае имеем = + = . Если же угол (рис. 34, б), то направление компоненты = вектора противоположно направлению оси l. Тогда получаем = = cos( - ) = сos

То же - на вектор.

Что такое скалярное произведение векторов

Скалярным произведением двух ненулевых векторов а и b называется число, равное произведению длин этих векторов на косинус угла между ними.

Сформулировать условие ортогональности векторов

Условие ортогональности векторов.Два вектора a и b ортогональны (перпендикулярны) , если их скалярное произведение равно нулю.

Доказать свойства скалярного произведения векторов

Свойства скалярного произведения векторов

  1. Скалярное произведение вектора самого на себя всегда больше или равно нуля:
  1. Скалярное произведение вектора самого на себя равно нулю тогда и только тогда, когда вектор равен нулевому вектору:

a · a = 0 <=> a = 0

  1. Скалярное произведение вектора самого на себя равно квадрату его модуля:
  1. Операция скалярного умножения коммуникативна:
  1. Если скалярное произведение двух не нулевых векторов равно нулю, то эти вектора ортогональны:

a ≠ 0, b ≠ 0, a · b = 0 <=> a ┴ b

  1. (αa) · b = α(a · b)
  2. Операция скалярного умножения дистрибутивна:

(a + b) · c = a · c + b · c

Вывести выражение скалярного произведения через координаты

Сформулировать свойства векторного произведения

ТОЛЬКО 1 ФОРМУЛУ

Сверху это определитель.

Аналитическая геометрия

1. Доказать теоремы об общем уравнении прямой на плоскости

2. Провести исследование общего уравнения прямой на плоскости

3. Вывести уравнение прямой на плоскости с угловым коэффициентом и уравнение прямой в отрезках на осях

4. Вывести каноническое уравнение прямой на плоскости, записать параметрические уравнения, вывести уравнение прямой, проходящей через две заданные точки

5. Как определяют угол между прямыми на плоскости, если они заданы каноническими уравнениями или уравнениями с угловым коэффициентом?

6. Вывести условия параллельности, совпадения и перпендикулярности прямых на плоскости

7. Получить формулу для вычисления расстояния от точки до прямой на плоскости

8. Доказать теоремы об общем уравнении плоскости

9. Сформулировать и доказать теорему о взаимном расположении пары плоскостей

10. Провести исследование общего уравнения плоскости

11. Получить уравнение плоскости в отрезках и уравнение плоскости, проходящей через две заданные точки

12. Получить формулу для вычисления расстояния от точки до плоскости

13. Как вычисляется угол между плоскостями?

14. Вывести условия параллельности и перпендикулярности двух плоскостей

15. Записать общий вид уравнений прямой в пространстве, получить канонический вид уравнений прямой в пространстве

16. Вывести параметрические уравнения прямой в пространстве, а также прямой, проходящей через две точки пространства.

17. Как определятся угол между двумя прямыми в пространстве? Записать условия параллельности и перпендикулярности прямых в пространстве

18. Как определяется угол между прямой и плоскостью? Записать условия перпендикулярности и параллельности прямой и плоскости

19. Получить условие принадлежности двух прямых одной плоскости

Математический анализ

1. Что такое функция, каковы способы ее задания?

2. Что такое чётная и нечетная функции, как строить их графики

3. Что такое периодическая и обратная функции, как строить их графики

4. Изобразить в графиках показательную и логарифмическую функции при a>1, a<1.

5. Что такое гармоническая зависимость, каков вид ёё графика?

6. Изобразить графики y=arcsinx, y=arccosx, y=arctgx, y=arcctgx

7. Что такое элементарная функция. Графики основных элементарных функций

8. Как строить графики вида y=cf(x), y=f(cx), y=f(x)+c, y=f(x+c)

9. Что такое числовая последовательность, каковы способы ее задания?

10. Что такое монотонная и ограниченная последовательность?

11. Что называется пределом последовательности? Записать определение того, что данное число не является пределом данной последовательности

12. Сформулировать свойства пределов последовательностей

13. Доказать два основных свойства сходящихся последовательностей

14. Какое из них дает необходимое условие сходимости?

15. Сформулировать теорему, которая дает достаточное условие сходимости последовательности

16. Доказать любое из свойств пределов последовательностей

17. Что такое бесконечно малая (большая) последовательность?

18. Сформулировать свойства бесконечно малых последовательностей

19. Что называется пределом функции?

20. Сформулировать свойства пределов функций

21. Что называется односторонним пределом?

22. Записать первый замечательный предел и вывести его следствие

23. Записать второй замечательный предел и вывести его следствия

24. Какие функции называют бесконечно малой, ограниченной, бесконечно большой?

25. Сформулировать свойства бесконечно малых функций, доказать любое из них

26. Какие понятия вводятся для сравнения бесконечно малых функций, дать их определения

27. Какая функция называется непрерывной в заданной точке?

28. Сформулировать критерий непрерывности и охарактеризовать виды разрывов

29. Что такое производная функции в фиксированной точке?

30. Что называется односторонними производными?

31. Что такое дифференциал функции и как он связан с приращением функции?

32. Физический смысл первой и второй производных

33. Что такое производная функция от функции?

34. Перечислить свойства производных, доказать два из них (u+v)" и (uv)"

35. Записать таблицу производных, доказать любые две формулы

36. Каков геометрический смысл производной и дифференциала?

37. Вывести уравнение касательной и нормали к графику функции

38. Доказать теорему о производной сложной функции

39. Вывести производную обратной функции (привести пример её нахождения)

40. Обосновать теорему об исчислении производных

41. Доказать все теоремы о среднем для дифференцируемых функций

42. Сформулировать и доказать правило Лопиталя

43. Какие функции называются возрастающими и убывающими на интервале?

44. Доказать теоремы о связи производной с возрастанием функции

45. Что такое точки экстремума?

46. Обосновать необходимое условие экстремума

47. Вывести два вида достаточного условия экстремума

48. Как находить наибольшее и наименьшее значения функции на отрезке?

49. Что называется выпуклой и вогнутой функцией?

50. Как исследовать функцию на выпуклость и вогнутость? Что называется точками перегиба?

51. Асимптоты - дать определения, пояснить способы нахождения

52. Вывести формулу нахождения производной (первой и второй) параметрически заданной функции

53. Что такое вектор-функция, её годограф и его механический смысл?

54. Охарактеризовать по величине и направлению скорость и ускорение материальной точки при равномерном движении по окружности

55. Охарактеризовать по величине и направлению скорость и ускорение материальной точки при неравномерном движении по окружности

56. Получить производные функции y=e x , y=sinx, y=cosx, y=tgx, y=lnx, y=arcsinx, y=arccosx

Что называется координатами вектора

Координатами вектора называются проекции и данного вектора на оси и соответственно:

Величина называется абсциссой вектора , а число - его ординатой . То, что вектор имеет координаты и , записывается следующим образом: .

До сих пор считалось, что векторы рассматриваются в пространстве. Начиная с этого момента будим считать, что все векторы рассматриваются на плоскости. Будем также полагать, что на плоскости задана Декартова система координат (даже если об этом не говорится), представляющая две взаимно перпендикулярные числовые оси – горизонтальная ось и вертикальная ось. Тогда каждой точке
на плоскости ставится в соответствие пара чисел
, которые являются ее координатами. Обратно, каждой паре чисел
соответствует точка плоскости такая, что пара чисел
являются ее координатами.

Из элементарной геометрии известно, что если на плоскости имеются две точки
и
, то расстояние
между этими точками выражается через их координаты по формуле

Пусть на плоскости задана Декартова система координат. Орт оси будем обозначать символом, а орт осисимволом. Проекцию произвольноговекторана осьбудем обозначать символом
, а проекцию на осьсимволом
.

Пусть - произвольный вектор на плоскости. Имеет место следующая теорема.

Теорема 22.

Для любого вектора на плоскости существует пара чисел

.

При этом
,
.

Доказательство.

Пусть дан вектор. Отложим векторот начала координат. Обозначим черезвектор-проекцию векторана ось, а черезвектор-проекцию векторана ось. Тогда, как видно из рисунка 21, имеет место равенство

.

Согласно теореме 9,

,

.

Обозначим
,
. Тогда получаем

.

Итак, доказано, что для любого вектора существует пара чисел
таких, что справедливо равенство

,

,

.

При другом расположении вектора относительно осей доказательство аналогично.

Определение.

Пара чисел итаких, что
, называются координатами вектора. Числоназывается иксовой координатой, а числоигрековой координатой.

Определение.

Пара ортов осей координат
называется ортонормированным базисом на плоскости. Представление любого векторав виде
называется разложением векторапо базису
.

Непосредственно из определения координат вектора следует, что если координаты векторов равны, то равны и сами векторы. Справедливо также и обратное утверждение.

Теорема.

Равные векторы имеют равные координаты.

Доказательство.

,

и
. Докажем, что
,
.

Из равенства векторов следует, что

.

Допустим, что
, а
.

Тогда
и значит
, что не верно. Аналогично, если
, но
, то
. Отсюда
, что не верно. Наконец, если допустить, что
и
, то получаем, что

.

Это означает, что векторы иколлинеареы. Но это не верно, так как они перпендикулярны. Следовательно, остается, что
,
, что и требовалось доказать.

Таким образом, координаты вектора полностью определяют сам вектор. Зная координаты ивектораможно построить сам вектор, построив векторы
и
и сложив их. Поэтому часто сам векторобозначают в виде пары его координат и пишут
. Такая запись означает, что
.

Непосредственно из определения координат вектора следует следующая теорема.

Теорема.

При сложении векторов их координаты складываются а при умножении вектора на число его координаты умножаются на это число. Записываются эти утверждения в виде

.

Доказательство.

,

Теорема.

Пусть
, причем начало вектора точкаимеет координаты
, а конец вектора есть точка
. Тогда координаты вектора связаны с координатами его концов следующими соотношениями

,

.

Доказательство.

Пусть
и пусть вектор-проекция векторана осьсонаправлен с осью(см. рис. 22). Тогда

так как длина отрезка на числовой осиравна координате правого конца минус координата левого конца. Если вектор

противонаправлен оси(как на Рис. 23), то

Рис. 23.

Если
, то в этом случае
и тогда получаем

.

Таким образом, при любом расположении вектора
относительно осей координат его координатаравна

.

Аналогично доказывается, что

.

Пример.

Даны координаты концов вектора
:
. Найти координаты вектора
.

Решение.

В следующей теореме приводится выражение длины вектора через его координаты.

Теорема 15.

Пусть
.Тогда

.

Доказательство.

Пусть и- вектор-проекции векторана осии, соответственно. Тогда, как показано при доказательстве теоремы 9, имеет место равенство

.

При этом, векторы ивзаимно перпендикулярны. При сложении этих векторов по правилу треугольника получаем прямоугольный треугольник (см. Рис. 24).

По теореме Пифагора имеем

.

,

.

Следовательно

,

.

.

.

Пример.

.Найти.

Введем понятие направляющих косинусов вектора.

Определение.

Пусть вектор
составляет с осьюугол, а с осьюугол(см. Рис. 25).

,

.

Следовательно,

Так как для любого вектора имеет место равенство

,

Где - орт вектора, то есть вектор единичной длины, сонаправленный с вектором, то

Вектор определяет направление вектора. Его координаты
и
называются направляющими косинусами вектора. Направляющие косинусы вектора можно выразить через его координаты по формулам

,

.

Имеет место соотношение

.

До настоящего момента в этом параграфе считалось, что все векторы располагаются в одной и той же плоскости. Теперь сделаем обобщение для векторов в пространстве.

Будем считать, что в пространстве задана Декартова система координат с осями ,и.

Орты осей ,ибудем обозначать символами,и, соответственно (Рис. 26).

Можно показать, что все понятия и формулы, которые были получены для векторов на плоскости, обобщаются для

Рис. 26.

векторов в пространстве. Тройка векторов
называется ортонормированным базисом в пространстве.

Пусть ,и- вектор-проекции векторана оси,и, соответственно. Тогда

.

В свою очередь

,

,

.

Если обозначить

,

,

,

То получаем равенство

.

Коэффициенты перед базисными векторами ,иназываются координатами вектора. Таким образом, для любого векторав пространстве существует тройка чисел,,, называемых координатами векторатаких, что для этого вектора справедливо представление

.

Вектор в этом случае также обозначают в виде
. При этом, координаты вектора равны проекциям этого вектора на координатные оси

,

,

,

где - угол между вектороми осью,- угол между вектороми осью,- угол между вектороми осью.

Длина вектора выражается через его координаты по формуле

.

Справедливы утверждения о том, что равные векторы имеют равные координаты, при сложении векторов их координаты складываются, а при умножении вектора на число его координаты умножаются на это число.
,
и
называются направляющими косинусами вектора. Они связаны с координатами вектора формулами

,
,
.

Отсюда следует соотношение

Если концы вектора
имеют координаты
,
, то координаты вектора
связаны с координатами концов вектора соотношениями

,

,

.

Пример.

Даны точки
и
. Найти координаты вектора
.

Наконец-то у меня добрались руки до обширной и долгожданной темы аналитической геометрии . Сначала немного о данном разделе высшей математики…. Наверняка вам сейчас вспомнился курс школьной геометрии с многочисленными теоремами, их доказательствами, чертежами и т.д. Что скрывать, нелюбимый и часто малопонятный предмет для значительной доли учеников. Аналитическая геометрия, как ни странно, может показаться более интересной и доступной. Что означает прилагательное «аналитическая»? На ум сразу приходят два штампованных математических оборота: «графический метод решения» и «аналитический метод решения». Графический метод , понятно, связан с построением графиков, чертежей. Аналитический же метод предполагает решение задач преимущественно посредством алгебраических действий. В этой связи алгоритм решений практически всех задач аналитической геометрии прост и прозрачен, зачастую достаточно аккуратно применить нужные формулы – и ответ готов! Нет, конечно, совсем без чертежей тут не обойдется, к тому же для лучшего понимания материала я постараюсь приводить их сверх необходимости.

Открываемый курс уроков по геометрии не претендует на теоретическую полноту, он ориентирован на решение практических задач. Я включу в свои лекции только то, что с моей точки зрения, является важным в практическом плане. Если вам необходима более полная справка по какому-либо подразделу, рекомендую следующую вполне доступную литературу:

1) Вещь, с которой, без шуток, знакомо несколько поколений: Школьный учебник по геометрии , авторы – Л.С. Атанасян и Компания . Сия вешалка школьной раздевалки уже выдержала 20-ть (!) переизданий, что, конечно, не является пределом.

2) Геометрия в 2 томах . Авторы Л.С. Атанасян, Базылев В.Т . Это литература для высшей школы, вам потребуется первый том . Из моего поля зрения могут выпадать редко встречающиеся задачи, и учебное пособие окажет неоценимую помощь.

Обе книги можно бесплатно закачать в Интернете. Кроме того, можете использовать мой архив с готовыми решениями, который можно найти на странице Скачать примеры по высшей математике .

Из инструментальных средств предлагаю опять же собственную разработку – программный комплекс по аналитической геометрии, который значительно упростит жизнь и сэкономит массу времени.

Предполагается, что читатель знаком с базовыми геометрическими понятиями и фигурами: точка, прямая, плоскость, треугольник, параллелограмм, параллелепипед, куб и т.д. Желательно помнить некоторые теоремы, хотя бы теорему Пифагора, привет второгодникам)

А сейчас мы последовательно рассмотрим: понятие вектора, действия с векторами, координаты вектора. Далее рекомендую прочитать важнейшую статью Скалярное произведение векторов , а также и Векторное и смешанное произведение векторов . Не лишней будет и локальная задача – Деление отрезка в данном отношении . На основе вышеуказанной информации можно освоить уравнение прямой на плоскости с простейшими примерами решений , что позволит научиться решать задачи по геометрии . Также полезны следующие статьи: Уравнение плоскости в пространстве , Уравнения прямой в пространстве , Основные задачи на прямую и плоскость , другие разделы аналитической геометрии. Естественно, попутно будут рассматривать типовые задания.

Понятие вектора. Свободный вектор

Сначала повторим школьное определение вектора. Вектором называется направленный отрезок, для которого указано его начало и конец:

В данном случае началом отрезка является точка , концом отрезка – точка . Сам вектор обозначен через . Направление имеет существенное значение, если переставить стрелку в другой конец отрезка, то получится вектор , и это уже совершенно другой вектор . Понятие вектора удобно отождествлять с движением физического тела: согласитесь, зайти в двери института или выйти из дверей института – это совершенно разные вещи.

Отдельные точки плоскости, пространства удобно считать так называемым нулевым вектором . У такого вектора конец и начало совпадают.

!!! Примечание: Здесь и далее можете считать, что векторы лежат в одной плоскости или можете считать, что они расположены в пространстве – суть излагаемого материала справедлива и для плоскости и для пространства.

Обозначения: Многие сразу обратили внимание на палочку без стрелочки в обозначении и сказали, там же вверху еще стрелку ставят! Верно, можно записать со стрелкой: , но допустима и запись , которую я буду использовать в дальнейшем . Почему? Видимо, такая привычка сложилась из практических соображений, слишком разнокалиберными и мохнатыми получались мои стрелки в школе и ВУЗе. В учебной литературе иногда вообще не заморачиваются клинописью, а выделяют буквы жирным шрифтом: , подразумевая тем самым, что это вектор.

То была стилистика, а сейчас о способах записи векторов:

1) Векторы можно записать двумя большими латинскими буквами:
и так далее. При этом первая буква обязательно обозначает точку-начало вектора, а вторая буква – точку-конец вектора.

2) Векторы также записывают маленькими латинскими буквами:
В частности, наш вектор можно для краткости переобозначить маленькой латинской буквой .

Длиной или модулем ненулевого вектора называется длина отрезка . Длина нулевого вектора равна нулю. Логично.

Длина вектора обозначается знаком модуля: ,

Как находить длину вектора мы узнаем (или повторим, для кого как) чуть позже.

То были элементарные сведения о векторе, знакомые всем школьникам. В аналитической же геометрии рассматривается так называемый свободный вектор .

Если совсем просто – вектор можно отложить от любой точки :

Такие векторы мы привыкли называть равными (определение равных векторов будет дано ниже), но чисто с математической точки зрения это ОДИН И ТОТ ЖЕ ВЕКТОР или свободный вектор . Почему свободный? Потому что в ходе решения задач вы можете «пристроить» тот или иной «школьный» вектор в ЛЮБУЮ, нужную вам точку плоскости или пространства. Это очень крутое свойство! Представьте направленный отрезок произвольной длины и направления – его можно «клонировать» бесконечное количество раз и в любой точке пространства, по сути, он существует ВЕЗДЕ. Есть такая студенческая присказка: Каждому лектору в ж**у по вектору. Ведь не просто остроумная рифма, всё почти корректно – направленный отрезок можно пристроить и туда. Но не спешите радоваться, чаще страдают сами студенты =)

Итак, свободный вектор – это множество одинаковых направленных отрезков. Школьное определение вектора, данное в начале параграфа: «Вектором называется направленный отрезок…», подразумевает конкретный направленный отрезок, взятый из данного множества, который привязан к определённой точке плоскости или пространства.

Следует отметить, что с точки зрения физики понятие свободного вектора в общем случае некорректно, и точка приложения имеет значение. Действительно, прямой удар одинаковой силы по носу или по лбу хватит развивать мой дурацкий пример влёчет разные последствия. Впрочем, несвободные векторы встречаются и в курсе вышмата (не ходите туда:)).

Действия с векторами. Коллинеарность векторов

В школьном курсе геометрии рассматривается ряд действий и правил с векторами: сложение по правилу треугольника, сложение по правилу параллелограмма, правило разности векторов, умножения вектора на число, скалярное произведение векторов и др. Для затравки повторим два правила, которые особенно актуальны для решения задач аналитической геометрии.

Правило сложения векторов по правилу треугольников

Рассмотрим два произвольных ненулевых вектора и :

Требуется найти сумму данных векторов. В силу того, что все векторы считаются свободными, отложим вектор от конца вектора :

Суммой векторов и является вектор . Для лучшего понимания правила в него целесообразно вложить физический смысл: пусть некоторое тело совершило путь по вектору , а затем по вектору . Тогда сумма векторов представляет собой вектор результирующего пути с началом в точке отправления и концом в точке прибытия. Аналогичное правило формулируется для суммы любого количества векторов. Как говорится, тело может пройти свой путь сильно поддатым по зигзагу, а может и на автопилоте – по результирующему вектору суммы.

Кстати, если вектор отложить от начала вектора , то получится эквивалентное правило параллелограмма сложения векторов.

Сначала о коллинеарности векторов. Два вектора называются коллинеарными , если они лежат на одной прямой или на параллельных прямых. Грубо говоря, речь идёт о параллельных векторах. Но применительно к ним всегда используют прилагательное «коллинеарные».

Представьте два коллинеарных вектора. Если стрелки данных векторов направлены в одинаковом направлении, то такие векторы называются сонаправленными . Если стрелки смотрят в разные стороны, то векторы будут противоположно направлены .

Обозначения: коллинеарность векторов записывают привычным значком параллельности: , при этом возможна детализация: (векторы сонаправлены) или (векторы направлены противоположно).

Произведением ненулевого вектора на число является такой вектор , длина которого равна , причём векторы и сонаправлены при и противоположно направлены при .

Правило умножения вектора на число легче понять с помощью рисунка:

Разбираемся более детально:

1) Направление. Если множитель отрицательный, то вектор меняет направление на противоположное.

2) Длина. Если множитель заключен в пределах или , то длина вектора уменьшается . Так, длина вектора в два раза меньше длины вектора . Если множитель по модулю больше единицы, то длина вектора увеличивается в раз.

3) Обратите внимание, что все векторы коллинеарны , при этом один вектор выражен через другой, например, . Обратное тоже справедливо : если один вектор можно выразить через другой, то такие векторы обязательно коллинеарны. Таким образом: если мы умножаем вектор на число, то получится коллинеарный (по отношению к исходному) вектор .

4) Векторы сонаправлены. Векторы и также сонаправлены. Любой вектор первой группы противоположно направлен по отношению к любому вектору второй группы.

Какие векторы являются равными?

Два вектора равны, если они сонаправлены и имеют одинаковую длину . Заметьте, что сонаправленность подразумевает коллинеарность векторов. Определение будет неточным (избыточным), если сказать: «Два вектора равны, если они коллинеарны, сонаправлены и имеют одинаковую длину».

С точки зрения понятия свободного вектора, равные векторы – это один и тот же вектор, о чём уже шла речь в предыдущем параграфе.

Координаты вектора на плоскости и в пространстве

Первым пунктом рассмотрим векторы на плоскости. Изобразим декартову прямоугольную систему координат и от начала координат отложим единичные векторы и :

Векторы и ортогональны . Ортогональны = Перпендикулярны. Рекомендую потихоньку привыкать к терминам: вместо параллельности и перпендикулярности используем соответственно слова коллинеарность и ортогональность .

Обозначение: ортогональность векторов записывают привычным значком перпендикулярности, например: .

Рассматриваемые векторы называют координатными векторами или ортами . Данные векторы образуют базис на плоскости. Что такое базис, думаю, интуитивно многим понятно, более подробную информацию можно найти в статье Линейная (не) зависимость векторов. Базис векторов .Простыми словами, базис и начало координат задают всю систему – это своеобразный фундамент, на котором кипит полная и насыщенная геометрическая жизнь.

Иногда построенный базис называют ортонормированным базисом плоскости: «орто» – потому что координатные векторы ортогональны, прилагательное «нормированный» означает единичный, т.е. длины векторов базиса равны единице.

Обозначение: базис обычно записывают в круглых скобках, внутри которых в строгой последовательности перечисляются базисные векторы, например: . Координатные векторы нельзя переставлять местами.

Любой вектор плоскости единственным образом выражается в виде:
, где – числа , которые называются координатами вектора в данном базисе. А само выражение называется разложением вектора по базису .

Ужин подан:

Начнем с первой буквы алфавита: . По чертежу хорошо видно, что при разложении вектора по базису используются только что рассмотренные:
1) правило умножения вектора на число: и ;
2) сложение векторов по правилу треугольника: .

А теперь мысленно отложите вектор от любой другой точки плоскости. Совершенно очевидно, что его разложение будет «неотступно следовать за ним». Вот она, свобода вектора – вектор «всё носит при себе». Это свойство, разумеется, справедливо для любого вектора. Забавно, что сами базисные (свободные) векторы не обязательно откладывать от начала координат, один можно нарисовать, например, слева внизу, а другой – справа вверху, и от этого ничего не изменится! Правда, делать так не нужно, поскольку преподаватель тоже проявит оригинальность и нарисует вам «зачтено» в неожиданном месте.

Векторы , иллюстрируют в точности правило умножения вектора на число, вектор сонаправлен с базисным вектором , вектор направлен противоположно по отношению к базисному вектору . У данных векторов одна из координат равна нулю, дотошно можно записать так:


А базисные векторы, к слову, так: (по сути, они выражаются сами через себя).

И, наконец: , . Кстати, что такое вычитание векторов, и почему я не рассказал о правиле вычитания? Где-то в линейной алгебре, уже не помню где, я отмечал, что вычитание – это частный случай сложения. Так, разложения векторов «дэ» и «е» преспокойно записываются в виде суммы: , . Проследите по чертежу, как чётко в этих ситуациях работает старое доброе сложение векторов по правилу треугольника.

Рассмотренное разложение вида иногда называют разложением вектора в системе орт (т.е. в системе единичных векторов). Но это не единственный способ записи вектора, распространён следующий вариант:

Или со знаком равенства:

Сами базисные векторы записываются так: и

То есть, в круглых скобках указываются координаты вектора. В практических задачах используются все три варианта записи.

Сомневался, говорить ли, но всё-таки скажу: координаты векторов переставлять нельзя . Строго на первом месте записываем координату, которая соответствует единичному вектору , строго на втором месте записываем координату, которая соответствует единичному вектору . Действительно, и – это ведь два разных вектора.

С координатами на плоскости разобрались. Теперь рассмотрим векторы в трехмерном пространстве, здесь практически всё так же! Только добавится ещё одна координата. Трехмерные чертежи выполнять тяжко, поэтому ограничусь одним вектором, который для простоты отложу от начала координат:

Любой вектор трехмерного пространства можно единственным способом разложить по ортонормированному базису :
, где – координаты вектора (числа) в данном базисе.

Пример с картинки: . Давайте посмотрим, как здесь работают правила действий с векторами. Во-первых, умножение вектора на число: (красная стрелка), (зеленая стрелка) и (малиновая стрелка). Во-вторых, перед вами пример сложения нескольких, в данном случае трёх, векторов: . Вектор суммы начинается в исходной точке отправления (начало вектора ) и утыкается в итоговую точку прибытия (конец вектора ).

Все векторы трехмерного пространства, естественно, тоже свободны, попробуйте мысленно отложить вектор от любой другой точки, и вы поймёте, что его разложение «останется при нём».

Аналогично плоскому случаю, помимо записи широко используются версии со скобками: либо .

Если в разложении отсутствует один (или два) координатных вектора, то вместо них ставятся нули. Примеры:
вектор (дотошно ) – запишем ;
вектор (дотошно ) – запишем ;
вектор (дотошно ) – запишем .

Базисные векторы записываются следующим образом:

Вот, пожалуй, и все минимальные теоретические знания, необходимые для решения задач аналитической геометрии. Возможно многовато терминов и определений, поэтому чайникам рекомендую перечитать и осмыслить данную информацию ещё раз. Да и любому читателю будет полезно время от времени обращаться к базовому уроку для лучшего усвоения материала. Коллинеарность, ортогональность, ортонормированный базис, разложение вектора – эти и другие понятия будут часто использоваться в дальнейшем. Отмечу, что материалов сайта недостаточно для сдачи теоретического зачета, коллоквиума по геометрии, так как все теоремы (к тому же без доказательств) я аккуратно шифрую – в ущерб научному стилю изложения, но плюсом к вашему пониманию предмета. Для получения обстоятельной теоретической справки прошу следовать на поклон к профессору Атанасяну.

А мы переходим к практической части:

Простейшие задачи аналитической геометрии.
Действия с векторами в координатах

Задания, которые будут рассмотрены, крайне желательно научиться решать на полном автомате, а формулы запомнить наизусть , даже специально не запоминать, сами запомнятся =) Это весьма важно, поскольку на простейших элементарных примерах базируются другие задачи аналитической геометрии, и будет досадно тратить дополнительное время на поедание пешек. Не нужно застёгивать верхние пуговицы на рубашке, многие вещи знакомы вам со школы.

Изложение материала пойдет параллельным курсом – и для плоскости, и для пространства. По той причине, что все формулы… сами увидите.

Как найти вектор по двум точкам?

Если даны две точки плоскости и , то вектор имеет следующие координаты:

Если даны две точки пространства и , то вектор имеет следующие координаты:

То есть, из координат конца вектора нужно вычесть соответствующие координаты начала вектора .

Задание: Для тех же точек запишите формулы нахождения координат вектора . Формулы в конце урока.

Пример 1

Даны две точки плоскости и . Найти координаты вектора

Решение: по соответствующей формуле:

Как вариант, можно было использовать следующую запись:

Эстеты решат и так:

Лично я привык к первой версии записи.

Ответ:

По условию не требовалось строить чертежа (что характерно для задач аналитической геометрии), но в целях пояснения некоторых моментов чайникам, не поленюсь:

Обязательно нужно понимать различие между координатами точек и координатами векторов :

Координаты точек – это обычные координаты в прямоугольной системе координат. Откладывать точки на координатной плоскости, думаю, все умеют ещё с 5-6 класса. Каждая точка обладает строгим местом на плоскости, и перемещать их куда-либо нельзя.

Координаты же вектора – это его разложение по базису , в данном случае . Любой вектор является свободным, поэтому при желании или необходимости мы легко можем отложить его от какой-нибудь другой точки плоскости. Интересно, что для векторов можно вообще не строить оси, прямоугольную систему координат, нужен лишь базис, в данном случае ортонормированный базис плоскости .

Записи координат точек и координат векторов вроде бы схожи: , а смысл координат абсолютно разный , и вам следует хорошо понимать эту разницу. Данное отличие, разумеется, справедливо и для пространства.

Дамы и господа, набиваем руку:

Пример 2

а) Даны точки и . Найти векторы и .
б) Даны точки и . Найти векторы и .
в) Даны точки и . Найти векторы и .
г) Даны точки . Найти векторы .

Пожалуй, достаточно. Это примеры для самостоятельного решения, постарайтесь ими не пренебрегать, окупится;-). Чертежи делать не нужно. Решения и ответы в конце урока.

Что важно при решении задач аналитической геометрии? Важно быть ПРЕДЕЛЬНО ВНИМАТЕЛЬНЫМ, чтобы не допустить мастерскую ошибку «два плюс два равно нулю». Сразу извиняюсь, если где ошибся =)

Как найти длину отрезка?

Длина, как уже отмечалось, обозначается знаком модуля.

Если даны две точки плоскости и , то длину отрезка можно вычислить по формуле

Если даны две точки пространства и , то длину отрезка можно вычислить по формуле

Примечание: Формулы останутся корректными, если переставить местами соответствующие координаты: и , но более стандартен первый вариант

Пример 3

Решение: по соответствующей формуле:

Ответ:

Для наглядности выполню чертёж

Отрезок – это не вектор , и перемещать его куда-либо, конечно, нельзя. Кроме того, если вы выполните чертеж в масштабе: 1 ед. = 1 см (две тетрадные клетки), то полученный ответ можно проверить обычной линейкой, непосредственно измерив длину отрезка.

Да, решение короткое, но в нём есть ещё пара важных моментов, которые хотелось бы пояснить:

Во-первых, в ответе ставим размерность: «единицы». В условии не сказано, ЧТО это, миллиметры, сантиметры, метры или километры. Поэтому математически грамотным решением будет общая формулировка: «единицы» – сокращенно «ед.».

Во-вторых, повторим школьный материал, который полезен не только для рассмотренной задачи:

Обратите внимание на важный технический приём вынесение множителя из-под корня . В результате вычислений у нас получился результат и хороший математический стиль предполагает вынесение множителя из-под корня (если это возможно). Подробнее процесс выглядит так: . Конечно, оставить ответ в виде не будет ошибкой – но недочетом-то уж точно и весомым аргументом для придирки со стороны преподавателя.

Вот другие распространенные случаи:

Нередко под корнем получается достаточно большое число, например . Как быть в таких случаях? На калькуляторе проверяем, делится ли число на 4: . Да, разделилось нацело, таким образом: . А может быть, число ещё раз удастся разделить на 4? . Таким образом: . У числа последняя цифра нечетная, поэтому разделить в третий раз на 4 явно не удастся. Пробуем поделить на девять: . В результате:
Готово.

Вывод: если под корнем получается неизвлекаемое нацело число, то пытаемся вынести множитель из-под корня – на калькуляторе проверяем, делится ли число на: 4, 9, 16, 25, 36, 49 и т.д.

В ходе решения различных задач корни встречаются часто, всегда пытайтесь извлекать множители из-под корня во избежание более низкой оценки да ненужных заморочек с доработкой ваших решений по замечанию преподавателя.

Давайте заодно повторим возведение корней в квадрат и другие степени:

Правила действий со степенями в общем виде можно найти в школьном учебнике по алгебре, но, думаю, из приведённых примеров всё или почти всё уже ясно.

Задание для самостоятельного решения с отрезком в пространстве:

Пример 4

Даны точки и . Найти длину отрезка .

Решение и ответ в конце урока.

Как найти длину вектора?

Если дан вектор плоскости , то его длина вычисляется по формуле .

Если дан вектор пространства , то его длина вычисляется по формуле .

Для начала дадим определение координат вектора в заданной системе координат. Чтобы ввести данное понятие, определим что мы называем прямоугольной или декартовой системой координат.

Определение 1

Прямоугольная система координат представляет из себя прямолинейную систему координат с взаимно перпендикулярными осями на плоскости или в пространстве.

С помощью введения прямоугольной системы координат на плоскости или в трехмерном пространстве становится возможным описывание геометрических фигур вместе с их свойствами при помощи уравнений и неравенств, то есть использовать алгебраические методы при решении геометрических задач.

Тем самым, мы можем привязать к заданной системе координат векторы. Это значительно расширит наши возможности при решении определенных задач

Прямоугольная система координат на плоскости обычно обозначается O x y , где O x и O y – оси коорднат. Ось O x называют осью абсцисс, а ось O y – осью ординат (в пространстве появляется ещё одна ось O z , которая перпендикулярна и O x и O y).

Пример 1

Итак, нам дана прямоугольная декартова система координат O x y на плоскости если мы отложим от начала координат векторы i → и j → , направление которых соответственно совпадет с положительными направлениями осей O x и O y , и их длина будет равна условной единице, мы получим координатные векторы. То есть в данном случае i → и j → являются координатными векторами.

Координатные векторы

Определение 2

Векторы i → и j → называются координатными векторами для заданной системы координат.

Пример 2

Откладываем от начала координат произвольный вектор a → . Опираясь на геометрическое определение операций над векторами, вектор a → может быть представлен в виде a → = a x · i → + a y · j → , где коэффициенты a x и a y - единственные в своем роде, их единственность достаточно просто доказать методом от противного.

Разложение вектора

Определение 3

Разложением вектора a → по координатным векторам i → и j → на плоскости называется представление вида a → = a x · i → + a y · j → .

Определение 4

Коэффициенты a x и a y называются координатами вектора в данной системе координат на плоскости.

Координаты вектора в данной системе координат принято записывать в круглых скобках, через запятую, при этом заданные координаты следует отделять от обозначения вектора знаком равенства. К примеру, запись a → = (2 ; - 3) означает, что вектор a → имеет координаты (2 ; - 3) в данной системе координат и может быть представлен в виде разложения по координатным векторам i → и j → как a → = 2 · i → - 3 · j → .

Замечание

Следует обратить внимание, что порядок записи координат, имеет важное значение, если вы запишите координаты вектора в другом порядке, вы получите совершенно другой вектор.

Опираясь на определения координат вектора и их разложения становится очевидным, что единичные векторы i → и j → имеют координаты (1 ; 0) и (0 ; 1) соответственно, и они могут быть представлены в виде следующих разложений i → = 1 · i → + 0 · j → ; j → = 0 · i → + 1 · j → .

Также имеет место быть нулевой вектор 0 → с координатами (0 ; 0) и разложением 0 → = 0 · i → + 0 · j → .

Равные и противоположные векторы

Определение 5

Векторы a → и b → равны тогда, когда их соответствующие координаты равны.

Определение 6

Противоположным вектором называется вектор противоположный данному.

Отсюда следует, что координаты такого вектора будут противоположны координатам данного вектора, то есть, - a → = (- a x ; - a y) .

Все вышеизложенное можно аналогично определить и для прямоугольной системы координат, заданной в трехмерном пространстве. В такой системе координат имеет место быть тройка координатных векторов i → , j → , k → , а произвольный вектор a → раскладывается не по двум, а уже по трем координатам, причем единственным образом и имеет вид a → = a x · i → + a y · j → + a z · k → , а коэффициенты этого разложения (a x ; a y ; a z) называются координатами вектора в данной (трехмерной) системе координат.

Следовательно, координатные векторы в трехмерном пространстве принимают также значение 1 и имеют координаты i → = (1 ; 0 ; 0) , j → = (0 ; 1 ; 0) , k → = (0 ; 0 ; 1) , координаты нулевого вектора также равны нулю 0 → = (0 ; 0 ; 0) , и в таком случае два вектора будут считаться равными, если все три соответствующие координаты векторов между собой равны a → = b → ⇔ a x = b x , a y = b y , a z = b z , и координаты противоположного вектора a → противоположны соответствующим координатам вектора a → , то есть, - a → = (- a x ; - a y ; - a z) .

Чтобы ввести данное определение, требуется показать в данной системе координат связь координат точки и координат вектора.

Пусть нам дана некоторая прямоугольная декартова система координат O x y и на ней задана произвольная точка M с координатами M (x M ; y M) .

Определение 7

Вектор O M → называется радиус-вектором точки M .

Определим, какие координаты в данной системе координат имеет радиус-вектор точки

Вектор O M → имеет вид суммы O M → = O M x → + O M y → = x M · i → + y M · j → , где точки M x и M y это проекции точки М на координатные прямые Ox и Oy соответственно (данные рассуждения следуют из определения проекция точки на прямую), а i → и j → - координатные векторы, следовательно, вектор O M → имеет координаты (x M ; y M) в данной системе координат.

Иначе говоря, координаты радиус-вектора точки М равны соответствующим координатам точки М в прямоугольной декартовой системе координат.

Аналогично в трехмерном пространстве радиус-вектор точки M (x M ; y M ; z M) разлагается по координатным векторам как O M → = O M x → + O M y → + O M z → = x M · i → + y M · j → + z M · k → , следовательно, O M → = (x M ; y M ; z M) .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter