Условия появления иммуногенности. Антигены и антитела Антигены — виды и свойства. Иммуногенность

Антигены – это вещества, которые несут признаки генетически чужеродной информации и при введении в организм вызывают развитие специфических иммунологических реакций.

Антигенные вещества представляют собой высокомолекулярные соединения, обладающие определенными свойствами: чужеродностью, антигенностью, иммуногенностью, специфичностью и определенной молекулярной массой. Антигенами могут быть разнообразные вещества белковой природы, а также белки в соединении с липидами и полисахаридами. Антигенными свойствами обладают клетки животного и растительного происхождения, яды животного и растительного происхождения. Антигенными свойствами обладают вирусы, бактерии, микроскопические грибы, простейшие, экзо - и эндотоксины микроорганизмов. Все антигенные вещества имеют ряд общих свойств:

Антигенность – это способность антигена вызывать иммунный ответ . Степень иммунного ответа организма на различные антигены неодинакова, т. е. на каждый антиген вырабатывается неодинаковое количество антител.

Специфичность – это особенность строения веществ, по которой антигены отличаются друг от друга. Ее определяет антигенная детерминанта, т. е. небольшой участок молекулы антигена, который соединяется с выработанным на него антителом.

Иммуногенность - это способность создавать иммунитет. Это понятие относится, главным образом, к микробным антигенам, обеспечивающим создание иммунитета к инфекционным болезням. Антиген, чтобы быть иммуногенным, должен быть чужеродным и иметь достаточно большую молекулярную массу. С увеличением молекулярной массы иммуногенность нарастает. Корпускулярные антигены (бактерии, грибы, эритроциты) более иммуногены, чем растворимые. Среди растворимых антигенов наибольшей иммуногенность обладают высокомолекулярные соединения.

Антигены подразделяют на полноценные и неполноценные. Полноценные антигены вызывают в организме синтез антител или сенсибилизацию лимфоцитов и вступают с ними в реакцию как in vivo, так и in vitro. Для полноценных антигенов характерна строгая специфичность, т. е. они вызывают в организме выработку только специфических антител, вступающих в реакцию только с данным антигеном.

Неполноценные антигены (гаптены) представляют собой сложные углеводы, липиды и другие вещества, не способные вызвать образование антител в организме, но вступающие с ними в специфическую реакцию. Добавление к гаптенам небольшого количества белка придает им свойства полноценного антигена.

Аутоантигены – антигены, образованные из белков собственных тканей, изменивших свои физико-химические свойства под воздействием различных факторов (токсины и ферменты бактерий, лекарственные вещества, ожоги, обморожения, облучение). Такие, измененные белки становятся чужеродными для организма, и организм отвечает выработкой антител, т. е. возникают аутоиммунные заболевания.

Если рассматривать антигенные свойства микроорганизма, то можно отметить, что антигенный состав – это достаточно постоянная характеристика любого микроорганизма. В антигеном комплексе чаще всего встречаются общеродовые антигены (общие для представителей данного рода), группоспецифические (присущие определенной группе), видоспецифические (присущие всем особям данного вида), и штаммоспецифические.

По локализации антигены могут быть поверхностные (К-антигены – антигены клеточной стенки), соматические (О-антигены, локализованы во внутреннем слое клеточной стенки, термостабильны) и жгутиковые (Н-антигены, присутствуют у всех подвижных бактерий, термолабильны). Многие из них активно секретируются клеткой в окружающую среду. В тоже время, существуют гидрофобные антигены, прочно связанные с клеточной стенкой.

Кроме того, патогенные микроорганизмы способны выделять ряд экзотоксинов. Экзотоксины обладают свойствами полноценных антигенов с выраженной неоднородностью в пределах рода и вида. Споры бактериальной клетки также обладают антигенными свойствами: они содержат антиген, общий для вегетативной клетки и споры.

Патогенные микроорганизмы ведут постоянную борьбу с иммунной системой путем изменения структуры поверхностных антигенов. Изменения чаще всего появляются в результате точечных мутаций, в результате появляются варианты существующих антигенов.

Антитела

В процессе эволюции организмы выработали набор защитных приспособлений к патогенным микроорганизмам, включающие неспецифические механизмы, препятствующие проникновению патогенов, вещества неспецифически повреждающие их (лизоцим, комплемент), фагоцитоз и другие клеточные реакции. Вместе с тем, патогенные микроорганизмы тоже научились преодолевать неспецифические барьеры. Поэтому в процессе эволюции появились специфические гуморальные факторы защиты в виде антител и способность организма к выраженному специфическому иммунному ответу.

Антитела – белки, относящиеся к иммуноглобулинам, которые синтезируются лимфоидными и плазматическими клетками в ответ на попадание в организм антигена, обладающими способностью специфически связываться с ним. Антитела составляют более 30% белков сыворотки крови, обеспечивают специфичность гуморального иммунитета благодаря способности связываться только с тем антигеном, который стимулировал их синтез.

Первоначально антитела условно классифицировали по их функциональным свойствам на нейтрализующие, лизирующие и коагулирующие. К нейтрализующим были отнесены антитоксины, антиферменты и вируснейтрализующие лизины. К коагулирующим – агглютинины и преципитины; к лизирующим – гемолитические и комплементсвязывающие антитела. С учетом функциональной способности антител были даны названия серологическим реакциям: агглютинация, гемолиз, лизис, преципитация и др.

В соответствии с Международной классификацией сывороточные белки, несущие функцию антител, получили название иммуноглобулинов (Ig). В зависимости от физикохимических и биологических свойств различают иммуноглобулины классов IgM, IgG, IgA, IgE, IgD.

Иммуноглобулины – белки с четвертичной структурой, т. е. их молекулы построены из нескольких полипептидных цепей. Молекула каждого класса состоит из четырех полипептидных цепей – двух тяжелых и двух легких, связанных между собой дисульфидными мостиками. Легкие цепи – структура общая для всех классов иммуноглобулинов. Тяжелые цепи имеют характерные структурные особенности, присущие определенному классу, подклассу.

Антитела, входящие в определенные классы иммуноглобулинов, обладают различными физическими химическими, биологическими и антигенными свойствами.

Иммуноглобулины содержат три вида антигенных детерминант: изотипические (одинаковые для каждого представителя данного вида), аллотипические (детерминанты, различные у представителей данного вида) и идиотипические (детерминанты, определяющие индивидуальность данного иммуноглобулина и являющиеся различными у антител одного класса, подкласса). Все указанные антигенные различия определяются с помощью специфических сывороток.

Синтез и динамика образования антител

Антитела вырабатывают плазматические клетки селезенки, лимфатических узлов, костного мозга, пейеровых бляшек. Плазматические клетки (антителопродуценты) происходят из предшественников В-клеток после их контакта с антигеном. Механизм синтеза антител аналогичен синтезу любых белков и происходит на рибосомах. Легкие и тяжелые цепи синтезируются отдельно, затем соединяются на полирибосомах, а окончательная их сборка происходит в пластинчатом комплексе.

Динамика образования антител. При первичном иммунном ответе в антителообразовании различают две фазы: индуктивную (латентную) и продуктивную. Индуктивная фаза – это период от момента парентерального введения антигена до появления антигенреактивных клеток (продолжительность не более суток). В эту фазу происходит пролиферация и дифференцировка лимфоидных клеток в направлении синтеза IgM. Вслед за индуктивной фазой наступает продуктивная фаза антителообразования. В этот период, примерно до 10…15 суток уровень антител резко возрастает, при этом уменьшается число клеток, синтезирующих IgM, и нарастает продукция IgA.

Феномен взаимодействия антиген-антитело.

Знание механизмов взаимодействия антигенов и антител раскрывает сущность многообразных иммунологических процессов и реакций, возникающих в организме под влиянием патогенных и непатогенных факторов.

Реакция между антителом и антигеном протекает в две стадии:

Специфическая - непосредственное соединение активного центра антитела с антигенной детерминантой.

Неспецифическая – вторая стадия, когда, отличающийся плохой растворимостью иммунный комплекс выпадает в осадок. Эта стадия возможна в присутствии раствора электролита и визуально проявляется по разному, в зависимости от физического состояния антигена. Если антигены корпускулярные, то имеет место феномен агглютинации (склеивания различных частиц и клеток). Образующиеся конгломераты выпадают в осадок, при этом клетки морфологически не изменяются, теряя подвижность, они остаются живыми.

Для того чтобы спровоцировать иммунный ответ, антиген должен обладать свойством иммуногена, как об этом уже упоминалось. С другой стороны, организму (реципиенту) необходимо обладать способностью воспринимать сигнал и включать иммунные механизмы. Например, при анализе генетического контроля иммунного ответа выявлены линии мышей и морских свинок, одни из которых отвечают на определенный антиген, а другие остаются ареактивными к тому же антигену. Иными словами, антиген в качестве иммуногена проявляется тогда, когда иммунная система конкретного организма способна к адекватному ответу. Иммуногенность антигена определяется следующими свойствами: чужеродностью для организма, молекулярной массой, химическим строением.

Чужеродность. Для того чтобы молекула выступила в качестве иммуногена, она должна быть распознана иммунной системой как «не своя». Это качество антигена кажется очевидным. При этом не все чужеродные молекулы способны вызвать иммунный ответ равной силы. Хорошо известно, что филогенетическая удаленность донора антигена от реципиента и выраженность иммунного ответа находятся в прямой зависимости.
Например, синтез антител к бычьему сывороточному альбумину легче вызвать у кролика, чем у козы. Кролики относятся к отряду зайцеобразных, а козы и быки включены в другой отряд - парнокопытных. В зависимости от особенностей антигена его иммуногенные свойства будут проявляться и на внутривидовом (индивидуальном) уровне. Получение антител к антигенам гистосовместимости или аллотипам иммуноглобулинов - обычный прием исследовательской работы. В то же время антитела к альбумину при внутривидовой иммунизации не образуются.

Изменение конформации собственных белков (например, при тепловой или химической денатурации) делает такие белки чужеродными для собственного организма, который реагирует на них синтезом антител. Развитие реакции к собственным, нативным антигенам известно при аутоиммунных заболеваниях. Однако такая патологическая реактивность связана с нарушениями в самой иммунной системе и не связана с какими-либо изменениями в аутоантигенах. Молекулярная масса. Экспериментаторам хорошо известна зависимость между размерами антигена и силой иммунного ответа.
Все корпускулярные антигены (бактерии, гетерологичные эритроциты) хорошие иммуногены. Для белковых антигенов иммунный ответ будет тем сильнее, чем больше его молекулярная масса. При всех прочих равных условиях большая молекулярная масса антигена обеспечивает большую иммуногенность. Вирус табачной мозаики - наиболее сильный иммуноген в отличие от рибонуклеазы - слабого иммуногена.

Химические особенности. Чужеродность и значительная молекулярная масса не являются достаточным условием для проявления иммуногенности антигена. Синтетический поли-Ь-лизин с высокой молекулярной массой не является иммуногеном. В то же время сополимеры, построенные из двух аминокислот и более, приобретают способность индуцировать иммунный ответ. Иммуногенность значительно усиливается, если в структуру сополимера включены ароматические аминокислоты. Так, например, сополимер двух аминокислот лизина и глутаминовой кислоты приобретает иммуногенность при минимальной молекулярной массе 30 - 40 кДа. Добавление в сополимер тирозина снижает минимальную молекулярную массу, достаточную для проявления иммуногенности, до 10 - 20 кДа.
При включении еще одной ароматической аминокислоты - фенилаланина иммуногенность сополимера проявляется при молекурной массе, равной всего 4 кДа. К этой же категории явлений относится увеличение иммуногенности очень слабого антигена желатины добавлением небольшого количества тирозина.

Еще одна особенность, связанная с химическим строением полимерных молекул: антиген распознается Т-хелперами на поверхности антигенпрезентирующей клетки, где он экспрессируется в иммуногенной форме после переработки гидролитическими ферментами. Если ферменты лизосом не способны деградировать макромолекулы, то они остаются неиммуногенными и слабоиммуногенными. Ферменты макрофагов разрушают белки, построенные из L-аминокислот, и остаются инертными к D-изомерам, что и является причиной крайне низкой иммуногенности синтетических полимеров, построенных из D-аминокислот.

Требования к организму
Наличие у антигенов перечисленных выше свойств (чужеродность, достаточная молекулярная масса, особенности химической структуры) не всегда является гарантом развития полноценного иммунного ответа.
Это зависит от иммунизируемого организма, его индивидуальной генетической характеристики - генотипа.

Различные инбредные линии мышей неодинаково отвечают на один и тот же антиген. Так, мыши, имеющие гаплотип главного комплекса гистосовместимости (МНС) Н-2Ь, развивают крайне слабый ответ на введение синтетического сополимера: полигистидин-полиглутаминовая кислота-полиаланин-полилизин [(H,G)-A-L]. При этом мыши с гаплотипом Н-2к характеризуются высоким ответом. В силе иммунного ответа на другой сополимер [(T,G)-A-L], который отличается от предыдущего всего на одну аминокислоту, отмечается реверсия: линия с гаплотипом Н-2Ь развивает сильный ответ, линия Н-2к - слабый. В основе столь тонкой дифференцировки антигена лежат различия по генам иммунного ответа (Ir-генам), локализованным в МНС.

1.Определение антигена.

(Слайд: определение антигена, классификация и основные свойства антигенов)

Антигены - вещества различного происхождения, несущие признаки генетической чужеродности и вызывающие развитие иммунных реакций (гуморальных, клеточных, иммунологической толерантности, иммунологической памяти и др.).

2. Классификация антигенов и их основные свойства.

Свойства антигенов, определяет их иммуногенность - способность вызывать иммунный ответ; специфичность - способность (антигена) избирательно взаимодействовать со специфическими антителами или антиген - распознающими рецепторами лимфоцитов; антигенность – мера антигенного качества, большая или меньшая способность вызывать образование антител.

Антигенами могут быть белки, полисахариды и нуклеиновые кислоты в комбинации между собой или липидами. Антигенами являются любые структуры, несущие признаки генетической чужеродности и распознаваемые в этом качестве иммунной системой. Наибольшей иммуногенностью обладают белковые антигены, в том числе бактериальные экзотоксины, вирусная нейраминидаза.

Многообразие понятия “антиген”.

Антигены разделены на полные (иммуногенные) , всегда проявляющие иммуногенные и антигенные свойства, и неполные (гаптены) , не способные самостоятельно вызывать иммунный ответ.

Гаптены обладают антигенностью, что обусловливает их специфичность, способность избирательно взаимодействовать с антителами или рецепторами лимфоцитов, определяться иммунологическими реакциями. Гаптены могут стать иммуногенными при связывании с иммуногенным носителем (например, белком), т.е. становятся полными.

За специфичность антигена отвечает гаптенная часть, за иммуногенность - носитель (чаще белок).

Иммуногенность зависит от ряда причин (молекулярного веса, подвижности молекул антигена, формы, структуры, способности к изменению). Существенное значение имеет степень гетерогенности антигена, т.е. чужеродность для данного вида (макроорганизма), степени эволюционной дивергенции молекул, уникальности и необычности структуры. Чужеродность определяется также молекулярной массой, размерами и строением биополимера, его макромолекулярностью и жесткостью структуры. Белки и другие высокомолекулярные вещества с более высоким молекулярным весом наиболее иммуногенны. Большое значение имеет жесткость структуры, что связано с наличием ароматических колец в составе аминокислотных последовательностей. Последовательность аминокислот в полипептидных цепочках - генетически детерминированный признак.

Антигенность белков является проявлением их чужеродности, а ее специфичность зависит от аминокислотной последовательности белков, вторичной, третичной и четвертичной (т.е. от общей конформации белковой молекулы) структуры, от поверхностно расположенных детерминантных групп и концевых аминокислотных остатков. Коллоидное состояние и растворимость - обязательные свойства антигенов.

3. Структура антигена.

Специфичность антигенов зависит от особых участков молекул белков и полисахаридов, называемых эпитопами. Эпитопы или антигенные детерминанты- фрагменты молекул антигена, вызывающие иммунный ответ и определяющие его специфичность. Антигенные детерминанты избирательно реагируют с антителами или антиген - распознающими рецепторами клетки. (Слайд: структура антигенов - рис. 1.11. «Иммунология» А.Ройт, Дж. Бростоф)

Структура многих антигенных детерминант известна. У белков это обычно фрагменты из 8 - 20 выступающих на поверхности аминокислотных остатков, у полисахаридов - выступающие О - боковые дезоксисахаридные цепи в составе ЛПС, у вируса гриппа - гемагглютинин, у вируса иммунодефицита человека - мембранный гликопептид.

Эпитопы качественно могут отличаться, к каждому могут образовываться “свои” антитела. Антигены, содержащие одну антигенную детерминанту, называют моновалентными, ряд эпитопов - поливалентными. Полимерные антигены содержат в большом количестве идентичные эпитопы (флагеллины, ЛПС).

Основные типы антигенной специфичности (зависят от специфичности эпитопов). (Слайд)

1.Видовая - характерна для всех особей одного вида (общие эпитопы).

2.Групповая - внутри вида (изоантигены, которые характерны для отдельных групп). Пример - группы крови (АВО и др.). Изоантигены – антигены, благодаря которым различные особи или группы особей животных одного вида отличаются друг от друга. К разряду изоантигенов можно отнести антигены гистосовместимости или трансплантационные антигены, обуславливающие различие клеток и тканей, вследствие чего возникает их несовместимость при пересадках.

3.Типоспецифичность - понятие аналогичное предыдущему, но имеющее отношение чаще всего к микроорганизмам. Например, пневмакокки по своим полисахаридным антигенам делятся на типы Возбудители ботулизма по характеру синтезируемого токсина делятся на типы А, В, С, Д, Е.

4.Гетероспецифичность - наличие общих антигенных детерминант у организмов различных таксономических групп. Имеются перекрестно - реагирующие антигены у бактерий и тканей макроорганизма.



а. Антиген Форсмана - типичный перекрестно - реагирующий антиген, выявлен в эритроцитах кошек, собак, овец, почке морской свинки.

б. Rh- система эритроцитов. У человека Rh - антигены агглютинируют антитела к эритроцитам обезьян Macacus rhesus, т.е. являются перекрестными.

в. Известны общие антигенные детерминанты эритроцитов человека и палочки чумы, вирусов оспы и гриппа.

г. Еще пример - белок А стрептококка и ткани миокарда (клапанный аппарат).

Подобная антигенная мимикрия обманывает иммунную систему, защищает от ее воздействия микроорганизмы. Наличие перекрестных антигенов способно блокировать системы, распознающие чужеродные структуры.

5.Функциональная – антигенная специфичность, связанная с функцией данной органической молекулы. Белки, выполняющие в организме различные функции иммунологически различаются (альбумины, глобулины).

6.Патологическая. При различных патологических изменениях тканей происходят изменения химических соединений, что может изменять нормальную антигенную специфичность. Появляются “ожоговые”, “лучевые”, “раковые” антигены с измененной видовой специфичностью. Существует понятие аутоантигенов - веществ организма, к которым могут возникать иммунные реакции (так называемые аутоиммунные реакции) , направленные против определенных тканей организма. Чаще всего это относится к органам и тканям, в норме не подвергающихся воздействию иммунной системы в связи с наличием барьеров (мозг, хрусталик, паращитовидные железы и др.).

7.Стадиоспецифичность . Имеются антигены, характерные для определенных стадий развития, связанные с морфогенезом. Альфа - фетопротеин характерен для эмбрионального развития, синтез во взрослом состоянии резко увеличивается при раковых заболеваниях печени.

4. Антигенная специфичность и антигенное строение бактерий.

Для характеристики микроорганизмов выделяют родовую, видовую, групповую и типовую специфичность антигенов. Наиболее точная дифференциация осуществляется с использованием моноклональных антител (МКА), распознающих только одну антигенную детерминанту.

Обладая сложным химическим строением, бактериальная клетка представляет целый комплекс антигенов. Антигенными свойствами обладают жгутики, капсула, клеточная стенка, цитоплазматическая мембрана, рибосомы и другие компоненты цитоплазмы, токсины, ферменты.

Основными видами бактериальных антигенов являются: (Слайд)

Соматические или О - антигены (у грамотрицательных бактерий специфичность определяется дезоксисахарами полисахаридов ЛПС);

Жгутиковые или Н- антигены (белковые);

Поверхностные или капсульные К - антигены.

Выделяют протективные антигены , обеспечивающие защиту (протекцию) против соответствующих инфекций, что используется для создания вакцин. Например, F 1 - антиген E.pestis – возбудителя чумы.

Суперантигены (некоторые экзотоксины, например - стафилококковый) вызывают чрезмерно сильную иммунную реакцию, часто приводят к побочным реакциям, развитию иммунодефицита или аутоиммунных реакций.

5. Антигены гистосовместимости.

(Слайд: определение МНС; тканевое распределение молекул МНС 1 и 2 классов - табл. 3.3, сравнительные данные о степени участия молекул МНС 1 и 2 классов в иммунных реакциях – табл. 3.4. «Иммунология» В.Г.Галактионов)

При пересадках органов возникает проблема совместимости тканей, связанная со степенью их генетического родства, реакциями отторжения чужеродных аллогенных и ксеногенных трансплантатов, т.е. проблемами трансплантационного иммунитета. Существует ряд тканевых антигенов. Трансплантационные антигены во многом определяют индивидуальную антигенную специфичность организма. Первоначально МНС определяли как совокупность генов, определяющих синтез трансплантационных антигенов. В настоящее время понятие МНС стало более широким. МНС – это комплекс близкосцепленных генов, основное предназначение которых – контроль различных функциональных проявлений иммунной реактивности. У людей она часто называется системой HLA (Human leucocyte antigens), в связи с четким представительством на лейкоцитах трансплантационных антигенов. Гены этой системы расположены на коротком плече хромосомы С6. Система HLA- это система сильных антигенов. Спектр молекул МНС уникален для организма, что определяет его биологическую индивидуальность и позволяет различать “чужое - несовместимое”.

Первые опыты и, которые легли в основу открытия МНС были выполнены благодаря близкородственному скрещиванию. Последовательное близкородственное скрещивание приводит к чистой инбредной линии животных. Основная характеристика такой линии состоит в том, что все ее особи гомозиготны и неотличимы в генетическом виде друг от друга.

Для решения вопросов сцепленности иммунологически значимых признаков с МНС, в частности признака иммунного отторжения трансплантанта, необходимо было иметь линии мышей, которые отличались бы друг от друга только по одному этому комплексу. в результате был разработан прием получения конгенных линий . В основе получения конгенных линий мышей лежит метод возвратного скрещивания - получение потомства в ряду поколений от скрещивания гетерозиготы (детей гомозиготных родителей, отличающихся генетически друг от друга) с одним из исходных гомозиготных родителей. Смысл заключается в замене МНС (комплекса Н-2) одной имбредной линии на гаплотип (набор сцепленных генов одной гаплоидной хромосомы) другой. Используются для изучения МНС рекомбинантные по МНС линии . Они отличаются друг от друга только отдельными или даже одним локусом комплекса Н-2. Рекомбинантные линииполучают при анализе потомков от скрещивания двух конгенных линий.

Использование инбредных линий для генетических и иммунологических исследований привело к созданию трансплантационной терминологии. (Слайд: терминология гистогенетических отношений между донором и реципиентом, законы трансплантации - табл. 3.1; рис. 3.4 , « Иммунология» В.Г. Галактионов)

Основными особенностями комплекса являются:

- полигенность - наличие нескольких неаллельных генов, белковой природы которые сходны структурно и функционально;

- полиморфизм – присутствие многих аллельных форм одного и того же гена.

Все гены МНС наследуются по кодоминантному типу. Полигенность и полиморфизм – определяют антигенную индивидуальность особей данного вида. Полиморфизм прямо связан с процессом презентации антигенных эпитопов Т- клеткам. С полиморфизмом антигенов МНС связано такое явление, как генетический контроль иммунного ответа. В тех случаях, когда аминокислотные остатки не в состоянии связать пептидный фрагмент чужеродного антигена, Т-хелперы остаются ареактивными и их помощь В-клеткам не реализуется. Это и является причиной генетически детерминированного дефекта в иммунном реагировании.

Семь генетических локусов системы разделены на три класса.

Гены первого класса контролируют синтез антигенов класса 1, определяют тканевые антигены и контролируют гистосовместимость. Антигены класса 1 определяют индивидуальную антигенную специфичность, они представляют любые чужеродные антигены Т - цитотоксическим лимфоцитам. Антигены класса 1 представлены на поверхности всех ядросодержащих клеток. Молекулы МНС класса 1 взаимодействуют с молекулой CD8, экспрессируемой на мембране предшественников цитотоксических лимфоцитов (CD- claster difference).

Гены МНС класса 2 контролируют антигены класса 2. Они контролируют ответ к тимусзависимым антигенам. Антигены класса 2 экспрессированы преимущественно на мембране иммунокомпетентных клеток (прежде всего макрофагов и В - лимфоцитов, частично - активированных Т- лимфоцитов). К этой же группе генов (точнее - области HLA - D) относятся также гены Ir - силы иммунного ответа и гены Is - супрессии иммунного ответа. Антигены МНС класса 2 обеспечивают взаимодействие между макрофагами и В - лимфоцитами, участвуют во всех стадиях иммунного ответа- представлении антигена макрофагами Т- лимфоцитам, взаимодействии (кооперации) макрофагов, Т- и В- лимфоцитов, дифференцировке иммунокомпетентных клеток. Антигены класса 2 принимают участие в формировании противомикробного, противоопухолевого, трансплантационного и других видов иммунитета.

Структуры, с помощью которых белки МНС классов 1 и 2 связывают антигены (так называемые активные центры) по уровню специфичности уступают только активным центрам антител.

Гены МНС класса 3 кодируют отдельные компоненты системы комплемента.

(Слайд: частота антигенов комплекса HLA в нормальной популяции людей и у лиц с некоторыми заболеваниями – табл. 3.5. «Иммунология» В.Г.Галактионов)

6. Процессинг антигенов

(Слайд: процессинг антигенов – рис. 9.20. «Иммунология» А.Ройт, Дж. Бростоф)

Процессинг антигенов - это их судьба в организме. Одной из важнейших функций макрофагов является переработка антигена в иммуногенную форму (это собственно и есть процессинг антигена) и представление его иммунокомпетентным клеткам. В процессинге, наряду с макрофагами, участвуют В - лимфоциты, дендритные клетки, Т- лимфоциты. Под процессингом понимают такую переработку антигена, в результате которой пептидные фрагменты антигена (эпитопы), необходимые для передачи (представления), отбираются и связываются с белками МНС класса 2 (или класса 1). В таком комплексном виде антигенная информация передается лимфоцитам. Дендритные клетки имеют значение в фиксации и длительном хранении (депонировании) переработанного антигена.

Экзогенные антигены подвергаются эндоцитозу и расщеплению в антиген- представляющих (презентирующих) клетках. Фрагмент антигена, содержащий антигенную детерминанту, в комплексе с молекулой класса 2 МНС транспортируется к плазматической мембране антиген - представляющей клетки, встраивается в нее и представляется CD4 Т- лимфоцитам. (Слайд: предполагаемые пути внутриклеточных перемещений молекул МНС, связанных с презентацией антигена - рис 9.26. «Иммунология» А.Ройт, Дж. Бростоф)

Эндогенные антигены - продукты собственных клеток организма. Это могут быть вирусные белки или аномальные белки опухолевых клеток. Их антигенные детерминанты представляются CD8 Т- лимфоцитам в комплексе с молекулой класса 1 МНС.

(Слайд: образование комплексов антигенных пептидов эндогенного происхождения с молекулами МНС класса 1 - рис 9.25. «Иммунология» А.Ройт, Дж. Бростоф)

Лекция № 4

Тема лекции: Гуморальный иммунитет. Иммуноглобулины. Роль антител в иммунном ответе. Реакция антиген - антитело, ее применение.

План лекции:

  • Алергія: етіологія, патогенез, класифікація алергічних реакціїй і їх характеристика.
  • Анемии вследствие кровопотерь. Виды. Этиология. Патогенез. Гематологическая характеристика.
  • Антигенная структура бактериальной клетки: О -, Vi -, К -, Н – антигены. Групповые и видовые антигены микробов.
  • Антигенная структура бактерий. Групповые, ввдовые, типовые антигены. Перекрестнореагируюшие антигены. Антигенная формула.
  • Антиген – это биополимер органической природы, генетически чужеродный для макроорганизма, который при попадании в последний распознаётся его иммунной системой и вызывает иммунные реакции, направленные на его устранение.

    Антигены обладают рядом характерных свойств: антигенностью, специфичностью и иммуногенностью.

    Антигенность . Под антигенностью понимают потенциаль­ную способность молекулы антигена акти­вировать компоненты иммунной системы и специфически взаимодействовать с фактора­ми иммунитета (антитела, клон эффекторных лимфоцитов). Иными словами, антиген дол­жен выступать специфическим раздражителем по отношению к иммунокомпетентным клет­кам. При этом взаимодействие компоненты иммунной системы происходит не со всей молекулой одновременно, а только с ее не­большим участком, который получил название «антигенная детерминанта», или «эпитоп».

    Чужеродность является обязательным усло­вием для реализации антигенности. По этому критерию система приобретенного иммунитета дифференцирует потенциально опасные объ­екты биологического мира, синтезированные с чужеродной генетической матрицы. Понятие «чужеродность» относительное, так как имму-нокомпетентные клетки не способны напря­мую анализировать чужеродный генетический код. Они воспринимают лишь опосредованную информацию, которая, как в зеркале, отражена в молекулярной структуре вещества.

    Иммуногенность - потенциальная способ­ность антигена вызывать по отношению к себе в макроорганизме специфическую за­щитную реакцию. Степень иммуногенности зависит от ряда факторов, которые можно объединить в три группы: 1. Молекулярные особенности антигена; 2. Клиренс антигена в организме; 3. Реактивность макроорганизма.

    К первой группе факторов отнесены природа, химический состав, молекулярный вес, струк­тура и некоторые другие характеристики.

    Иммуногенность в значительной степени за­висит от природы антигена. Важна также оптическая изомерия аминокислот, составляющих молекулу белка. Большое значение имеет размер и молекулярная масса антигена. На степень иммуногенности также оказыва­ет влияние пространственная структура анти­гена. Оказалась также существенной стерическая стабильность молекулы антигена. Еще одним важным условием иммуно­генности является растворимость антигена.

    Вторая группа факторов связана с динамикой поступления антигена в организм и его выведе­ния. Так, хорошо известна зависимость иммуногенности антигена от способа его введения. На иммунный ответ влияет количество пос­тупающего антигена: чем его больше, тем более выражен иммунный ответ.

    Третья группа объединяет факторы , опреде­ляющие зависимость иммуногенности от со­стояния макроорганизма. В этой связи на пер­вый план выступают наследственные факторы.

    Специфичностью называют способность ан­тигена индуцировать иммунный ответ к строго определенному эпитопу. Это свойство обуслов­лено особенностями формирования иммунно­го ответа - необходима комплементарность рецепторного аппарата иммунокомпетентных клеток к конкретной антигенной детерминанте. Поэтому специфичность антигена во многом определяется свойствами составляющих его эпитопов. Однако при этом следует учитывать условность границ эпитопов, их структурное разнообразие и гетерогенность клонов антигенреактивных лимфоцитовой специфичности. В результате этого организм на антигенное раз­дражение всегда отвечает поликлональными им­мунным ответом.

    Иммуногенность - потенциальная способность антигена вызывать иммунный ответ вне зависимости от его иммунной специфичности. Степень иммуногенности зависит от трех групп факторов: молекулярных особенностей антигена,кинетики антигена в организме,реактивности макроорганизма.

    На степень иммуногенности вещества влияют следующие факторы:

    • Природа антигена. Высокой иммуногенностью обладают белки и углеводы. Нуклеиновые кислоты, липиды и другие органические вещества зачастую слабоиммуногенны и могут выступать в роли эффективных антигенов только в составе комплексных соединений.
    • Размер молекулы вещества. С повышением молекулярной массы растёт иммуногенность. Для белков пороговый размер молекулы, при котором появляется иммуногенность, видимо, связан с появлением α-спиральной структуры. Молекулярная масса антигена влияет не только на формирование определённой вторичной структуры белка, но и на количество эпитопов и их разнообразие, что повышает валентность антигена и также влияет на степень его иммуногенности.
    • Жёсткость структуры молекулы антигена, то есть способность сохранять определённую конфигурацию, увеличивает иммуногенность.
    • Принадлежность антигенов к классам полимеров, свойственным высшим животным, увеличивает их иммуногенность для последних. В частности, полипептиды, состоящие из не свойственных позвоночным D-аминокислот, слабо иммуногенны для них. Предполагается, что это может быть связано с трудностью деградации этих веществ из-за отсутствия необходимых ферментов.

    Литература

    Ссылки

    Иммуногенность антигенов

    Иммуногенность антигена — это способность в организме иммунизированного животного образования антител. Иммуногенность как биологическое свойство антигена является более сложным, чем антигенность. Антигенности того или иного вещества недостаточно, чтобы вызвать образование антител. В качестве примера можно привести гаптены, которые приобретают иммуногенность только после конъюгирования с соответствующим носителем.

    Иммуногенность веществ сильно зависит от их молекулярной массы: чем выше молекулярная масса, тем выше иммуногенность. Отсюда вытекает важное практическое следствие — сшивка биополимеров между собой и другими белками повышает иммуногенность. Зависимость иммуногенности от молекулярной массы, по-видимому, определяется следующими причинами: во-первых, увеличение времени пребывания антигена в организме при возрастании его молекулярной массы; во-вторых, у высокомолекулярных антигеноа существенно возрастает способность взаимодействовать с макрофагами, в-третьих, с увеличением молекулярной массы в антигене увеличивается как общее количество антигенных детерминант, так и их разнообразие, что повышает эффективность взаимодействия] антигенов как с B-, так и с T-лимфоцитами.

    Плотность расположения и количество антигенных детерминант на поверхности антигенов также имеет важное значение: по мере увеличения этих показателей иммуногенность в начале растет, а затем начинает уменьшаться. Так, например, для динитрофенильной гаптеновой группы было показано, что из конъюгатов, содержащих 3, 16 и 28 групп на молекулу бычьего альбумина, максимальной антигенностью обладал конъюгат, содержащий 16 молекул гаптена.

    Одной из причин такого эффекта, по-видимому, является сложность межклеточной кооперации. В частности, показано, что в иммунном ответе против антигенов, имеющих повторяющиеся антигенные детерминанты, участвуют только В-лимфоциты; такие антигены называются независимыми . Для этих антигенов, например полимеров. D-аминокислот, также характерно снижение скорости метаболизма в организме.

    Очень важным является понятие "чужеродность" иммуногена. Установлено, что чем более антиген отличается по своей структуре от гомологичного антигена иммунизируемого животного, тем выше его иммуногенность. Например, инсулины человека и многих видов животных имеют близкую первичную структуру и поэтому для них инсулин человека малоиммуногенен. Однако между инсулином человека и морской свинки имеются достаточные отличия, что позволяет использовать этих животных как продуцентов соответствующих антисывороток.

    2. Иммуногенность

    Однако это правило нельзя считать абсолютным. Так, например, гормон тироксин имеет одинаковую структуру у всех животных, тем не менее, будучи конъюгированным с подходящим белком, он становится хорошим иммуногеном. В данном случае антигенная детерминанта состоит не только из гормона, но и "ножки" и части белковой глобулы, что в целом создает "чужеродную" структуру. Именно на этом принципе основано получение антител против различных низкомолекулярных физиологически активных веществ.

    "Чужеродность" зависит от генетических особенностей иммунизируемого животного, поэтому часто иммуногенность связывают с генетической чужеродностью антигена. Из "чужеродности" следует, что иммуногенность — это не абсолютное свойство антигена по отношению к данному виду животного, а иногда даже к индивидуальному организму. Необходимо иметь в виду, что иммунная система организма сама находится под жестким генетическим контролем, который определяет как биологическую активность различных участников иммунного процесса, так и многообразие специфичностей рецепторов, а значит, и специфичностей антител. Именно видовая и индивидуальная вариабельность организмов требует внимательного выбора вида животного. Чем менее " чужеродный" антиген, тем большее количество животных следует брать для иммунизации. Так, например, для получения антисывороток против инсулина наиболее иммунореактивными являются морские свинки, при этом в среднем только одна из семи морских свинок дает удовлетворительную для целей анализа антисыворотку. Даже в случае получения антисывороток против достаточно "чужеродных" антигенов необходима большая группа животных, так как в этом случае нивелируются индивидуальные различия. Смесь антисывороток против данного антигена от разных животных одной группы называют пулом.

    Из лабораторных животных чаще всего берут для иммунизации кроликов, морских свинок или мышей в зависимости от количества имеющегося антигена, доступности животного и т.д. Возможность использования группы лабораторных животных позволяет решить проблему отбора из них наиболее иммунореактивных. Иммунизировать удобнее самцов, так как у них иммуногенный ответ менее подвержен влиянию гормональных циклов. Для получения антител против вирусов эффективными оказались куры, у которых антитела накапливаются в яйцах. Большие количества антисывороток получают иммунизацией крупных животных: козлов, баранов, ослов, лошадей.

    Для получения специфических антисывороток важное значение имеет гомогенность антигена. Это обусловлено тем, что примеси чужеродных антигенов могут обладать большей иммуногенностью, чем основной антиген, в результате чего, несмотря на небольшое количество примеси, против нее может образоваться достаточное количество антител. Так, например, вирусные антигены, выделенные из культуры ткани животных, содержат примесь тканевых антигенов, против которых вырабатываются антитела, дающие ложноположительные реакции в иммунохимическом анализе.

    Степень иммунного ответа также зависит от количества введенного антигена. При определенных концентрациях антигена, как высоких, так и низких, наступает торможение гуморального иммунного ответа, называемое толерантностью. Это обусловливает необходимость выбора оптимальной дозы в каждом конкретном случае, с учетом чистоты препарата и его иммуногенности. Доза иммуногена для одной инъекции кролику или морской свинке составляет в среднем 100-300 мкг на 2 кг массы. Доза, необходимая для крупных животных, не увеличивается пропорционально их массе. Так, для овец достаточна доза, равная 0,25-5 мг иммуногена на инъекцию, для осла — 0,5-10 мг. В случае использования в качестве иммуногена конъюгата гаптенноситель доза зависит от молекулярной массы конъюгата.

    Способ введения антигена и периодичность введения влияют на иммунологическую активность антисывороток. Так как иммунный ответ формируется в организме постепенно, принято различать первичный ответ и вторичный ответ . Первичные и вторичные антисыворотки отличаются по составу антител и их специфичности. Обычно высокоактивные антисыворотки получают после нескольких циклов иммунизации. Однако очень длительные иммунизации могут привести к снижению специфичности из-за постепенного увеличения титра антител к примесным антигенам.

    В процессе иммунизации изменяется также аффинность и соотношение между различными фракциями антител. Такая вариабельность качества антисывороток по специфичности антител, их физико-химическим свойствам и концентрации является следствием популяционной природы иммунного ответа. В связи с этими обстоятельствами на практике необходимо вести непрерывный контроль за качеством получаемых антисывороток.

    Антигены — виды и свойства. Иммуногенность

    Антиген – это биополимер органической природы, генетически чужеродный для макроорганизма, который при попадании в последний распознаётся его иммунной системой и вызывает иммунные реакции, направленные на его устранение.

    Антигены обладают рядом характерных свойств: антигенностью, специфичностью и иммуногенностью.

    Существует два основных вида антигенов: экзогенные и эндогенные (аутологичные). Экзогенные антигены попадают в организм из внешней среды. Среди них различают инфекционные и неинфекционные АГ.

    Инфекционные антигены — это антигены бактерий, вирусов, грибов, простейших.

    Известны следующие разновидности бактериальных антигенов:

    — группоспецифические (встречаются у разных видов одного рода или семейства);

    — видоспецифические (у различных представителей одного вида);

    — типоспецифические (определяют серологические варианты — серовары, антигеновары внутри одного вида).

    Антигенность

    Под антигенностью понимают потенциальную способность молекулы антигена активировать компоненты иммунной системы и специфически взаимодействовать с факторами иммунитета (антитела, клон эффекторных лимфоцитов). Иными словами, антиген должен выступать специфическим раздражителем по отношению к иммунокомпетентным клеткам. При этом взаимодействие компоненты иммунной системы происходит не со всей молекулой одновременно, а только с ее небольшим участком, который получил название «антигенная детерминанта», или «эпитоп».

    Чужеродность является обязательным условием для реализации антигенности. По этому критерию система приобретенного иммунитета дифференцирует потенциально опасные объекты биологического мира, синтезированные с чужеродной генетической матрицы. Понятие «чужеродность» относительное, так как иммунокомпетентные клетки не способны напрямую анализировать чужеродный генетический код. Они воспринимают лишь опосредованную информацию, которая, как в зеркале, отражена в молекулярной структуре вещества.

    Иммуногенность - потенциальная способность антигена вызывать по отношению к себе в макроорганизме специфическую защитную реакцию. Степень иммуногенности зависит от ряда факторов, которые можно объединить в три группы:

    1. Молекулярные особенности антигена;

    2. Клиренс антигена в организме;

    3. Реактивность макроорганизма.

    К первой группе факторов отнесены природа, химический состав, молекулярный вес, структура и некоторые другие характеристики.

    Иммуногенность в значительной степени зависит от природы антигена. Важна также оптическая изомерия аминокислот, составляющих молекулу белка. Большое значение имеет размер и молекулярная масса антигена. На степень иммуногенности также оказывает влияние пространственная структура антигена. Оказалась также существенной стерическая стабильность молекулы антигена.

    Что Такое иммуногенность- Значение Слова иммуногенность

    Еще одним важным условием иммуногенности является растворимость антигена.

    Вторая группа факторов связана с динамикой поступления антигена в организм и его выведения. Так, хорошо известна зависимость иммуногенности антигена от способа его введения. На иммунный ответ влияет количество поступающего антигена: чем его больше, тем более выражен иммунный ответ.

    Третья группа объединяет факторы, определяющие зависимость иммуногенности от состояния макроорганизма. В этой связи на первый план выступают наследственные факторы.

    Специфичностью называют способность антигена индуцировать иммунный ответ к строго определенному эпитопу. Это свойство обусловлено особенностями формирования иммунного ответа - необходима комплементарность рецепторного аппарата иммунокомпетентных клеток к конкретной антигенной детерминанте. Поэтому специфичность антигена во многом определяется свойствами составляющих его эпитопов. Однако при этом следует учитывать условность границ эпитопов, их структурное разнообразие и гетерогенность клонов антигенреактивных лимфоцитовой специфичности. В результате этого организм на антигенное раздражение всегда отвечает поликлональными иммунным ответом.

    Антигены бактериальной клетки

    В структуре бактериальной клетки различают жгутиковые, соматические, капсульные и некоторые другие антигены. Жгутиковые, или Н-антигены, локализуются в локомоторном аппарате бактерий - их жгутиках. Они представляют собой эпитопы сократительного белка флагеллина. При нагревании флагеллин денатурирует, и Н-антиген теряет свою специфичность. Фенол не действует на этот антиген.

    Соматический, или О-антиген, связан с клеточной стенкой бактерий. Его основу составляют ЛПС. О-антиген проявляет термостабильные свойства - он не разрушается при длительном кипячении. Однако соматический антиген подвержен действию альдегидов (например, формалина) и спиртов, которые нарушают его структуру.

    Капсульные, или К-антигены, располагаются на поверхности клеточной стенки. Встречаются у бактерий, образующих капсулу. Как правило, К-антигены состоят из кислых полисахаридов (уроновые кислоты). В то же время у бациллы сибирской язвы этот антиген построен из полипептидных цепей. По чувствительности к нагреванию различают три типа К-антигена: А, В, и L. Наибольшая термостабильность характерна для типа А, он не денатурирует даже при длительном кипячении. Тип В выдерживает непродолжительное нагревание (около 1 часа) до 60 оС. Тип L быстро разрушается при этой температуре. Поэтому частичное удаление К-антигена возможно путем длительного кипячения бактериальной культуры.

    На поверхности возбудителя брюшного тифа и других энтеробактерий, которые обладают высокой вирулентностью, можно обнаружить особый вариант капсульного антигена. Он получил название антигена вирулентности, или Vi-антигена. Обнаружение этого антигена или специфичных к нему антител имеет большое диагностическое значение.

    Антигенными свойствами обладают также бактериальные белковые токсины, ферменты и некоторые другие белки, которые секретируются бактериями в окружающую среду (например, туберкулин). При взаимодействии со специфическими антителами токсины, ферменты и другие биологически активные молекулы бактериального происхождения теряют свою активность. Столбнячный, дифтерийный и ботулинический токсины относятся к числу сильных полноценных антигенов, поэтому их используют для получения анатоксинов для вакцинации людей.

    В антигенном составе некоторых бактерий выделяется группа антигенов с сильно выраженной иммуногенностью, чья биологическая активность играет ключевую роль в формировании патогенности возбудителя. Связывание таких антигенов специфическими антителами практически полностью инактивирует вирулентные свойства микроорганизма и обеспечивает иммунитет к нему. Описываемые антигены получили название протективных. Впервые протективный антиген был обнаружен в гнойном отделяемом карбункула, вызванного бациллой сибирской язвы. Это вещество является субъединицей белкового токсина, которая ответственна за активацию других, собственно вирулентных субъединиц - так называемого отечного и летального факторов.

    Антигены грибов

    Дрожжевые клетки Candida albicans содержат полисахарид клеточной стенки — маннан, цитоплазматические и ядерные белки. Среди них выявлено более 80 антигенов. Для иммунологических тестов используют экстракты цельных клеток, очищенный маннан или цитоплазматические белки. Антигены вызывают немедленные (антитела IgM, IgG, IgA, IgE классов) и замедленные (Т-клеточные) реакции и сенсибилизацию без клинических проявлений. Антитела также выявляются у некоторых здоровых лиц. В крови больных слизисто-кожным кандидозом находят антигены кандид.

    Антигены грибов обладают иммуностимулирующим и иммунодепрессивным действием.

    Антигены вирусов

    У большинства вирусов имеются суперкапсидные — поверхностные оболочечные, белковые и гликопротеидные АГ (например, гемагглютинин и нейраминидаза вируса гриппа), капсидные — оболочечные и нуклеопротеидные (сердцевинные) АГ.

    Протективные антигены

    Это совокупность антигенных детерминант (эпитопов), которые вызывают наиболее сильный иммунный ответ, что предохраняет организм от повторной инфекции данным возбудителем. Определение вирусных антигенов в крови и других биологических жидкостях широко используется для диагностики вирусных инфекций. Наиболее иммуногенные, протективные пептиды вирусов используются для создания синтетических вакцин. По строению они вариабельны даже у одного вида вирусов.

    Пути проникновения инфекционных антигенов в организм разнообразны:

    — через поврежденную и иногда неповрежденную кожу;
    — через слизистые оболочки носа, рта, желудочно-кишечного тракта, мочеполовых путей.

    Пути распространения антигенов — кровь, лимфа, а также по поверхности слизистых оболочек.

    Протективные антиген

    Cтраница 1

    Протективные антигены или их фрагменты, используемые для конструирования молекулярных вакцин, могут быть синтезированы искусственно.  

    Протективные антигены — это совокупность антигенных детерминант (эпитопов), которые вызывают наиболее сильный иммунный ответ, что предохраняет организм от повторного инфицирования данным возбудителем.  

    Все протективные антигены, используемые в убитых вакцинах, должны обладать природной высокой антигенностью, обеспечивая мощную выработку антител или накопление специфических Т — клеток. В этом случае понятия антигенности и иммуногенности практически совпадают.  

    Заключением протективных антигенов в микрокапсулы из полимеров и липидов (липосомы), обеспечивающих соответствующую динамику подачи антигена и активацию фагоцитов.  

    Есть предложения вместо протективных антигенов использовать участки ДНК возбудителя, к которому ковалентно присоединяются адгезины реовирусов.  

    В связи с целенаправленным выделением протективных антигенов и их дальнейшей очисткой молекулярные вакцины, созданные на базе очищенных протективных антигенов, обладают довольно низкой реактогенностью, токсичностью и аллер-гизируюшей активностью.  

    Как правило, в качестве таких протективных антигенов выступают различные факторы патогенное возбудителя. Именно при блокировании их функций патогенный организм не способен реализовать свою патоген-ность, не может противостоять системе иммунитета и погибает. Однако нельзя исключать, что в качестве протективных антигенов могут выступить иные жизненно важные компоненты клеток возбудителя.

    Условия появления иммуногенности

    Основным действующим началом убитых вакцин служат тоже протективные антигены, которые находятся в структуре микробных клеток или вирусов. Причем вакцины этого типа вводят, как правило, только парэнтерально: подкожно, внутрикожно, внутримышечно.  

    Такое трансгенное растение синтезирует в своем составе протективные антигены возбудителей. Эти антигены можно выделить, очистить и использовать как обычные молекулярные вакцины.  

    Этот вид вакцин получил свое название благодаря тому, что протективные антигены используются в них в виде отдельных, как правило, растворимых молекул. Отсюда и возникло предложение называть эти препараты химическими вакцинами.  

    Основная субстанция этого вида вакцин — чистая ДНК возбудителя, кодирующая эпитопы протективных антигенов. В последовательность ее оснований обычно включается подходящий промотор. Такая структура ДНК может проникать в клетку хозяина и встраиваться в ее геном.  

    В эту группу вакцинных препаратов относят молекулярные конструкции, у которых эпитопы протективных антигенов встроены в комплекс молекул гистосовместимости. Отмечается, что в таком виде вакцинные препараты способны индуцировать сильный клеточный иммунный ответ.  

    В эту же группу можно отнести вакцинные препараты, представляющие собой конъюгаты протективных антигенов (вернее, их фрагментов) с молекулами, обеспечивающими доставку и их присоединение к продуктам генов МНС. В качестве таких лигандных молекул могут быть использованы монокло-нальные антитела к молекулам МНС I и II классов, а также искусственно синтезированные пептиды, избирательно взаимодействующие с молекулами МНС.  

    В большинстве случаев (но не всегда) из вирулентных штаммов возбудителей выделяются более активные протективные антигены, и в большем количестве, чем из слабовирулентных.  

    Теоретической посылкой для создания таких вакцин явилось положение о том, что фрагменты протективных антигенов приобретают иммуногенность только после процессинга и встраивания в молекулы МНС. Поэтому, в качестве вакцины и предлагается такая, уже готовая конструкция.  

    Страницы:      1    2