Связь биосферы с космосом. Космические связи биосферы. Прогноз для России

Космические связи биосферы

«Биосфера» - термин, введенный в биологию еще Ж. Ламарком. В буквальном переводе он означает «сфера жизни». Стройное и глубокое учение о биосфере разработано нашим знаменитым соотечественником Владимиром Ивановичем Вернадским.

Жизнь встречается на Земле буквально повсюду.

Споры бактерий и грибков залетают в стратосферу на высоту более 20 км. Суша и океан буквально кишат живыми существами. Внутри земной коры, в шахтах глубиной около 3 км, находят анаэробные бактерии, способные жить и действовать при полном отсутствии кислорода. Словом, почти всюду в литосфере, гидросфере и атмосфере, куда бы ни проник человек, он встречает жизнь. Лишь очень высоко в атмосфере и в глубинах земного шара господствуют условия, исключающие жизнь. Впрочем, даже это, казалось бы, очевидное утверждение, по-видимому, нуждается в опытной проверке.

Жизнь существует на Земле по меньшей мере три миллиарда лет. За это время совершилась эволюция от простейших организмов до разумных существ. По мнению академика В. И. Вернадского, «твари Земли являются созданием сложного космического процесса, необходимой и закономерной частью стройного космического механизма».

Жизнь - явление космическое, а не только земное.

Это означает, что жизнь на Земле с первых своих шагов и до наших дней развивалась не изолированно от внешней космической среды, а, наоборот, постоянно взаимодействуя с ней. Печать космоса лежит на всех живых существах Земли, образующих ныне «биомассу» весом в тысячу биллионов (10 15) тонн. Если космические ритмы охватывают все неорганические оболочки Земли и даже земной шар в целом, то заранее можно предполагать, что эти ритмы как-то отражаются в жизни всех обитателей нашей планеты. Они не могут оставаться безразличными к окружающей их физической среде. А под внешней средой, как утверждал еще много лет назад А. Л. Чижевский, «мы должны понимать весь окружающий нас мир с великим множеством разного рода раздражителей».

«Мы вправе рассматривать весь органический мир нашей планеты, - говорил А. Л. Чижевский, - как творчество, как отражение космического процесса, происходящего за сотни миллионов километров от нас. В этом смысле жпзнь должна считаться явлением космическим, работою космических сил».

Факты показывают, что и на самом деле биосфера необыкновенно чувствительна ко всем космическим ритмам.

Мы не будем говорить о том, как реагируют живые существа на смену дня и ночи или на чередование времен года - эти факты общеизвестны. Наша цель - познакомить читателя с некоторыми гораздо более тонкими и менее известными космическими связями биосферы.

Солнечные ритмы растений

Еще в III веке до н. э. римский писатель Катон Старший обратил внимание на то, что в периоды «помрачения Солнца» цены на рожь заметно снижались. В XVII веке Батиста Балиани, современник и друг Галилея, в одном из писем великому итальянскому астроному высказал предположение, что солнечные пятна охлаждающе действуют на Землю, а это, в свою очередь, должно влиять на растительный мир планеты.

Вряд ли Вильям Гершель, знаменитый английский астроном XVIII века, знал о письме Балиани. Но и его интересовало влияние солнечных пятен на земные растения. В те времена 11-летний цикл еще не был известен, но астрономы знали, что в разные годы «пятнистость» Солнца неодинакова.

Гершель собрал наблюдения солнечных пятен почти за два века и сопоставил их с рыночными ценами на пшеницу. Связь в среднем получилась вполне четкой - чем «пятнистее» было Солнце, тем дешевле стоила пшеница.

Нам понятна эта связь. В годы высокой солнечной активности обильные дожди увлажняют почву. Урожай получается богатым, а рыночные цены на пшеницу соответственно падают.

Позже многие ученые подтвердили явную связь между урожаями и солнечными пятнами. Например, во Франции колебания цен на вино упорно следуют за колебаниями солнечной активности - ведь урожай винограда, как и пшеницы, больше тогда, когда на Солнце больше пятен.

Совсем недавно, в 1969 году, ленинградские биологи И. И. Минкевич, Т. И. Захарова и Н. А. Шибкова установили, что существует тесная связь между солнечной активностью и некоторыми болезнями сельскохозяйственных культур (бурой ржавчиной пшеницы и др.). Правда, в разных районах Земли солнечная активность влияет на урожай по-разному. В одних она повышает урожайность, в других, наоборот, усиливает вредоносность болезней растений. Видимо, эта разница вызвана различием в местных климатических условиях. Тем не менее связь солнечных пятен и урожаев бесспорна.

Еще в 1892 году русский ученый Ф. Н. Шведов обратил внимание на солнечные ритмы в толщине годичных слоев деревьев. Исследования Дугласа, о которых уже упоминалось, были, в сущности, лишь развитием и обобщением работ Шведова.

В 1948–1949 годах советский биолог М. П. Скрябин нашел следы векового солнечного цикла в таких явлениях жизни леса, как режим боровых болот, смена пород деревьев и многих других. Читатель не удивится, если узнает, что лесные пожары в некоторых районах бывают тем чаще, чем выше солнечная активность, а значит, чаще возникают засухи. Отражается в жизни леса и Брикнеров 33-летний цикл.

Механизм всех этих связей не вызывает сомнений.

Солнце влияет на климат, а изменения климата сказываются на росте растений и других особенностях их жизни. Но, к сожалению, далеко не всегда солнечно-земные связи так легко объяснимы.

Известно, что все растения выделяют через корни в почву различные органические вещества - аминокислоты, аминосахара и др. Чтобы из клетки растения попасть в почву, эти вещества должны преодолеть естественную преграду - оболочку клетки. Оказывается, проницаемость этой преграды в разное время неодинакова.

Московский биолог А. П. Дубров неожиданно открыл удивительный факт: после вспышек на Солнце резко увеличиваются корневые выделения растений, следовательно, столь же резко повышается проницаемость оболочек растительных клеток.

В октябре 1968 года удалось провести уникальный эксперимент. На протяжении двух дней в Москве, Иркутске, Свердловске, Минске, Таллине и Флоренции велась одновременная запись интенсивности корневых выделений проростков ячменя. Когда сравнили результаты, выяснилось, что всюду кривые поразительно схожи. Значит, на корневые выделения растений действуют не местные земные условия (в разных городах они различны), а какая-то одинаковая для всего земного шара космическая причина. Такой причиной, оказывается, были колебания напряженности магнитного поля Земли. А эти колебания - одно из непосредственных проявлений солнечной активности. Получается, что чем выше солнечная активность, тем обильнее растения выделяют в почву органические вещества.

Объяснить в подробностях, как все это совершается, далеко не просто. Всем известно, как магнит притягивает железные опилки. Но никому еще не удавалось поднять магнитом упавший лист. Как будто весь опыт человечества свидетельствует о том, что магнитные силы никак не могут влиять на растения.

Но это - заблуждение. Очень скоро читатель убедится, что на действие магнитных сил отзывается все живое.

Биотелескоп - астрономический инструмент будущего

Кроме видимых обитателей Земли - великого множества растений и животных, - нашу планету населяют еще более многочисленные невидимые организмы. Лишь вооружив глаз микроскопом, можно познакомиться с удивительной жизнью этих мельчайших живых существ - бактерий. Почти все они относятся к растительному миру.

Некоторые из них действительно внешне напоминают «палочки» - таков буквальный перевод греческого слова «бактерия».

В «Кратком справочнике по космической биологии и медицине» («Медицина», 1967) поясняется, что бактерии - это «низшие растительные организмы, как правило, одноклеточные». Далее сообщается, что бактерии имеют оболочку, но не содержат ярко выраженного клеточного ядра и хлорофилла - вещества, придающего зеленый цвет обычным растениям. В среднем каждая бактерия имеет поперечник всего в несколько микрон. Это, впрочем, нисколько не мешает их необыкновенной живучести и способности к размножению. Давно подсчитано, что если бы некоторым бактериям предоставили размножаться совершенно свободно, то за сутки они образовали бы биомассу, сравнимую по весу с земным шаром! К бактериям относится и большинство вредных болезнетворных организмов.

Отзываются ли эти микросущества на космические явления? Если реагируют, то как? И нельзя ли в жизни бактерий подметить солнечные ритмы?

Первым, кто почти полвека назад сформулировал эти проблемы и попытался найти на них ответ, был Александр Леонидович Чижевский. В ту пору он жил в Калуге и во всех своих научных исканиях постоянно советовался со своим другом и наставником Константином Эдуардовичем Циолковским. Великий основоположник космонавтики и на этот раз оказался необыкновенно прозорливым. Он одобрил программу опытов, разработанную Чижевским.

При содействии Циолковского Чижевский раздобыл свинец и из очень толстых свинцовых плит соорудил свинцовую камеру. В этот свинцовый домик Чижевский поместил некоторые бактерии, кусочки раковых опухолей в питательном растворе и, наконец, прорастающие семена растений.

Рядом со свинцовой камерой Чижевский построил маленький деревянный домик таких же размеров и с таким же «населением». Заваленный со всех сторон слоем земли толщиной 75 см, деревянный домик был контрольным сооружением. В свинцовую камеру, по мысли экспериментаторов, никакие космические излучения не проникали.

«Население» же деревянного домика, наоборот, подвергалось невидимым космическим облучениям. Навес над обоими домиками и земляная защита для деревянного домика изолировали их «население» от прямых солнечных лучей и резких колебаний температуры.

Конечно, с точки зрения современных требований к чистоте эксперимента, опыты Чижевского и Циолковского оставляли желать лучшего. Но это были первые шаги в новой, в сущности, области науки - космической микробиологии.

Три месяца продолжался опыт. Его результаты получались неожиданными. В свинцовом домике и бактерии, и семена растений, и раковые опухоли росли гораздо быстрее, чем в контрольном деревянном домике!

Напрашивался вывод, что невидимые космические излучения угнетают живые организмы, препятствуют их росту!

Несколько позже Чижевского и ничего не зная о его опытах, преподаватель Томского медицинского института Петр Михайлович Нагорский построил «биотрон» - свинцовую камеру, внутренность которой была изолирована от внешних космических воздействий. Как и Чижевский, томский врач помещал в свой биотрон самое разнообразное «население» - микроорганизмы, клубни картофеля, гидромедуз, планарии, дафнии, головастиков с отсеченными хвостами, лягушек и даже крысят.

Результаты получились такими же, как и у Чижевского. У колоний микроорганизмов наблюдался (в сравнении с контролем) ускоренный рост. Быстрее, чем обычно, росли хвосты у головастиков, заживлялись раны лягушек и крысят. Выходит, «без космоса» все эти живые существа чувствовали себя гораздо лучше, чем в обычной, естественной обстановке.

Опыты Нагорского, несмотря на отрицательное отношение к ним его коллег по институту, были одобрены академиками В. И. Вернадским и П. П. Лазаревым.

Теперь, когда космические ракеты выносят в космос «микрокосмонавтов» - подопытные микроорганизмы, когда широко изучается влияние космических условий на жизнь мельчайших живых существ, вполне уместно вспомнить и о первых, весьма робких шагах космической микробиологии. В сущности, современные опыты подтвердили выводы Чижевского и Нагорского. Микроорганизмы оказались очень чувствительными ко всем колебаниям космических условий, ко всем причудам весьма изменчивой «космической погоды». Но если это так, нельзя ли использовать микроорганизмы для астрономических наблюдений?

Нельзя ли построить своеобразный живой астрономический инструмент - биотелескоп?

Вдохновленный первыми результатами, А. Л. Чижевский решил продолжить свои эксперименты над микроорганизмами. Начиная с 1927 года в ряде опытов Чижевский доказал, что бактерии очень чувствительны к колебаниям солнечной активности. Эти выводы заинтересовали врача Сергея Тимофеевича Вельховера, руководившего в те годы в Казани клиникой инфекционных болезней. Он пошел дальше Чижевского и получил замечательные результаты.

Бактериологам давно уже были известны возбудители дифтерии - крошечные микроорганизмы, называемые палочками Леффлера. У этих палочек есть близнецы - внешне похожие на них, но совершенно безвредные дифтероидные коринебактерии. В них содержатся так называемые волютиновые зерна, которые под действием некоторых химических веществ (метиленовой сини) приобретают красноватую окраску. Палочки же Леффлера этим свойством не обладают.

Оказалось (и в этом суть открытия Вельховера), что красноватая окраска коринебактерий испытывает сезонные колебания и, что еще важнее, усиливается с повышением активности Солнца. Свыше 85 тысяч тщательно проведенных наблюдений подтверждают эти выводы. И, что самое замечательное, коринебактерии начинали заметно краснеть иногда за несколько часов, а чаще даже за несколько суток до очередной вспышки на Солнце! Получается, что по окраске коринебактерий можно предсказывать появление вспышек на Солнце!

Совсем недавно, в 1969 году, этот «эффект Чижевского - Вельховера» был подтвержден новыми исследованиями советских биологов М. М. Горшкова и М. Г. Давыдовой.

Недолго продолжалось тесное творческое содружество А. Л. Чижевского и С. Т. Вельховера. Начавшаяся война и смерть казанского бактериолога в 1942 году помешали продолжению интереснейших исследований. Но все-таки еще накануне войны, в 1940 году, А. Л. Чижевский построил первый биотелескоп - живой бактериальный прибор, в котором коринебактерий заранее реагировали на солнечные вспышки. 23 года спустя, в 1963 году, на Всесоюзной конференции по авиационной и космической медицине А. Л. Чижевский прочитал доклад о биотелескопе и перспективах его использования для нужд космонавтики. А нужда в таком инструменте очень остра.

Солнечные вспышки - самые яркие и самые мощные проявления солнечной активности. Они длятся от нескольких минут до нескольких часов. Каждую вспышку можно рассматривать как сильнейший взрыв, равноценный одновременному взрыву миллионов водородных бомб. Скорее всего, здесь происходит своеобразный «электрический пробой», вызванный особым состоянием солнечной плазмы.

Благодаря сильному току и резкому сжатию плазмы температура солнечных газов в области вспышки повышается до нескольких миллионов градусов. Вспышка «выстреливает» в мировое пространство потоки корпускул, самые энергичные и быстрые из которых достигают Земли уже через 20 мин.

Наблюдения показывают, что в конечном счете источником энергии солнечных вспышек служат солнечные магнитные поля. Еще до начала вспышки магнитные поля в активной области приобретают особо сложную структуру и большую напряженность. Значит, по изменению магнитных полей на Солнце можно за несколько дней вперед предсказывать наступление солнечной вспышки, причем эти пока еще не вполне совершенные прогнозы оправдываются в 80 случаях из 100.

Не только магнитные поля предупреждают о солнечных вспышках. Перед вспышкой активная область посылает в пространство особые, характерные только для этого случая сантиметровые радиоволны.

Значит, в том месте Солнца, где должна произойти вспышка, уже за несколько дней до нее усиливаются магнитные поля и радиоизлучения на сантиметровых волнах. Как бы сигнализируя земным астрономам, Солнце само предупреждает их о предстоящем резком ухудшении космической погоды.

В такие дни полеты космонавтов становятся опасными.

Самые мощные из солнечных вспышек могут создать для космонавтов дозу облучения в тысячи рентген, тогда как уже при дозе в 400–600 рентген смертельный исход неизбежен. Правда, космонавтов в какой-то мере защищают стенки космического корабля. Если под каждым квадратным сантиметром защитной оболочки поместить 20–30 г вещества, защита получится надежной. Но это, увы, непомерно утяжелит конструкцию космического корабля, что пока для современной техники непосильно.

Есть лекарственные органические вещества, предохраняющие от лучевой болезни или, по крайней мере, облегчающие ее течение. Приходится иногда пользоваться и ими. Но все-таки проблема защиты от мощных солнечных вспышек пока остается нерешенной.

Вспышки исключительной мощности повторяются в среднем через каждые три-четыре года. Большие вспышки бывают примерно раз в год. Зато в периоды повышенной солнечной активности рядовые солнечные вспышки повторяются каждый месяц, а то и чаще. А это опасно для космонавтов, особенно для тех, кто в такие дни собирается выходить из корабля в открытый космос или разгуливать по поверхности Луны.

Биотелескоп должен надежно предсказывать солнечные вспышки. Основная его часть, заменяющая линзы и зеркала в обычных телескопах - сосуд с коринебактериями или другими микроорганизмами, подобно им реагирующими на солнечные вспышки. Изменения цвета бактерий лучше оценивать не глазом, а более точным физическим прибором - колориметром. Тогда и прогнозы, возможно, удастся давать не за три-четыре дня, а за неделю.

Неясно, какие именно излучения Солнца воздействуют на коринебактерии. Может быть, эти микроорганизмы улавливают незаметное для нас увеличение потока солнечных радиоволн? Или еще более чутко они реагируют на магнитные поля активных областей Солнца? Или, наконец, как считал А. Л. Чижевский, в недрах Солнца задолго до вспышки возникают какие-то таинственные Z-излучения, но воспринимаемые бактериями?

Будущее решит эти проблемы. Во всяком случае, уже теперь полезно построить биотелескопы и попытаться с их помощью предсказывать опасные для космонавтов дни.

Когда животных охватывает безумие

Это случилось в начале мая 1929 года. Недалеко от Кушки, самого южного населенного пункта нашей страны, со стороны Афганистана появились многокилометровые живые тучи саранчи. Они неслись с огромной скоростью, быстро закрыли все небо, так что померкло Солнце. А «тучи» пролились «дождем» прожорливых насекомых.

Полчища саранчи покрыли дороги и мосты, поля и деревья.

Насекомые скакали по земле, ползали по крышам домов, а самки саранчи заражали почву яйцами на много километров вокруг. Саранча достигла Аральского моря и Ферганской долины, уничтожив всю растительность на площади в полтора миллиона гектаров. И в тот же, 1929 год, кроме Советского Союза, еще десять государств стали жертвой нашествия саранчи.

Издавна налеты саранчи считались жестоким стихийным бедствием. Грозные нашествия этих зловредных насекомых время от времени потрясали народы всех континентов и всех времен. Вот что записано о саранче в старинной арабской рукописи:

«И двинулась могучая рать. Она может покрыть всю землю и пожрать все, что есть на земле. Когда она врывается, меркнет солнце и звезды утрачивают свой блеск. У нее голова льва, шея быка, грудь коня, крылья орла, брюхо скорпиона, бедра верблюда, глаза страуса.»

Саранча - злейший враг тружеников полей .

Как говорится, у страха глаза велики. Саранча - скромное по размерам насекомое, страшное лишь свое и многочисленностью. Отпечатки саранчовых насекомых находят в глинистых прослойках каменного угля возрастом более 250 миллионов лет. Населяя Землю поистине с незапамятных времен, саранчовые насекомые в настоящее время насчитывают около 10 тысяч видов.

Из советских энтомологов лучше всего знал саранчу и ее повадки Николай Сергеевич Щербиновский, которого его коллеги в шутку называли «королем саранчи». Он посвятил изучению саранчи десятки лет жизни, путешествовал для этой цели по многим странам Азии и Южной Америки. Но нас сейчас интересует лишь одно очень важное открытие советского ученого. Щербиновский подметил, что налеты саранчи происходят регулярно, повторяясь примерно каждые 11 лет. Таков же в среднем цикл и особенно обильного размножения саранчи. Сделав это открытие, Щербиновский смело предсказывал очередные особенно опасные налеты саранчи, и всякий раз эти прогнозы оправдывались.

Значит, снова хорошо знакомый 11-летний солнечный цикл? Да, конечно, именно он каким-то не вполне ным образом регулирует размножение саранчи. И не только саранчи.

11-летняя цикличность замечена в размножении трески, сельди, севрюги, леща и других промысловых рыб.

Раз в 11 лет их улов бывает особенно обильным. Этот же цикл явственно проступает и в размножении некоторых ядовитых пауков. В годы массового появления этих вредных насекомых от их укусов гибнут животные, а иногда и люди.

Примерно раз в 11 лет обильно размножаются южноафриканские антилопы. И тогда, ни с того ни с сего, безо всякого видимого основания, они покидают великолепные пастбища и несметными стадами отправляются в сухие бесплодные места, где гибнут от голода. Очевидцы рассказывают, что лев, случайно попавший внутрь стада таких обезумевших антилоп, гибнет, не в силах выбраться наружу.

В периоды массовых миграций похоже ведут себя и белки, стада которых насчитывают сотни миллионов особей. Кстати сказать, 11-летний солнечный ритм с поразительной четкостью отражается в размножении многих грызунов. Вот еще один совсем свежий пример безумия, охватившего некоторых животных в период высокой активности Солнца.

Лето 1970 года… Во многих газетах под заголовком «Навстречу гибели» публикуется следующее сообщение:

«На Севере Скандинавии в угрожающих масштабах увеличивается число мышей-пеструшек (леммингов), наводняющих все вокруг в своем безостановочном марше смерти. Сотни тысяч этих черно-рыжеватых арктических животных нескончаемым потоком передвигаются к югу.

По дороге они тысячами гибнут в озерах, реках и, наконец, в море…

Такой, похожий на самоубийство, поход пеструшки совершают почти регулярно раз в несколько лет. Обычно робкие, незаметные создания становятся чрезвычайно агрессивными хищниками, уничтожающими на своем пути все и вся, и это их смертоносное шествие не имеет себе равных в животном мире.

Самые крупные походы пеструшек наблюдались в 1918 и в 1938 годах. Нынешнее переселение привлекло внимание встревоженных скандинавских властей. Дело в том, что в ноябре прошлого года, во время аналогичного похода, пеструшек насмерть давили машины на дорогах, нагрызали собаки. Повсюду появились груды разлагающихся трупов животных, и возникла угроза эпидемий.

Ученые так объясняют периодические «великие походы» пеструшек: через определенные периоды численность животных увеличивается настолько, что горная растительность, служащая им пищей, уже не в состоянии прокормить их всех. И тогда с приходом лета начинается стихийное паническое бегство, которое невозможно остановить.

Орды пеструшек устремляются по маршрутам, ведущим к морю. Они заполняют города и селения, уничтожают посевы, загрязняют местность и отравляют реки и озера».

Невольно создается впечатление, что явное безумие животных вызвано Солнцем. Солнце действительно «действует на нервы» - об этом речь пойдет позже в соответствующей главе книги. Тогда мы и вернемся к вопросу, каким же образом все-таки можно объяснить безумное поведение животных. А сейчас обратим внимание на то, что некоторые из таких лишенных всякого смысла миграций могут угрожать здоровью и жизни человека.

Слово «энцефалит» на языке медиков означает «воспаление мозга». Клещевой энцефалит - одно из самых тяжелых мозговых заболеваний. Оно грозит больному или смертью, или неисправимым, пожизненным увечьем.

Обычно клещевой энцефалит - весенне-летняя болезнь.

В 30-х годах от эпидемий клещевого энцефалита жестоко страдали жители новостроек Сибири и Дальнего Востока, покорители таежной целины.

Вирус этой болезни переносят от животных к людям кровососущие таежные клещи. Давно уже изучен в общих чертах возбудитель клещевого энцефалита, разработаны меры профилактики. Но беда в том, что с каждой новой волной эпидемии (а они регулярно повторяются в среднем каждые 11 лет) характер болезни меняется почти до неузнаваемости. А это крайне затрудняет работу врачей.

Численность заболеваний клещевым энцефалитом (пунктирная кривая) и солнечная активность (сплошная кривая).

И так из месяца в месяц, из года в год. Это была героическая работа, требующая не только знаний и настойчивости, но и большого мужества. Результаты оправдали усилия.

Прежде всего выяснилось, что добыча вируса в разные годы весьма различна. Бывали и такие периоды, когда клещи оказывались совсем безвредными насекомыми.

Наоборот, примерно раз в 11 лет заразность клещей достигала максимума. Когда Ю. В. Александров и В. Н. Ягодинский сопоставили кривую заболеваний клещевым энцефалитом на Дальнем Востоке с кривой солнечной активности, сходство получилось просто поразительным - у той и другой кривой максимумы по времени совпадали!

В 1956 году, отмеченном чрезвычайно высокой активностью Солнца, в системе Амура произошло небывалое по масштабам наводнение. Вероятно, оно послужило толчком к началу миграции белок, размножившихся в ту пору также весьма обильно. Неисчислимые полчища обезумевших белок двинулись на Север, где их ждали холод, голод и смерть. Они переплывали разлившийся Амур, преодолевали высокие горы и даже пытались пересечь вплавь Татарский пролив! Лапки у белок кровоточили, шерсть была стерта, но они шли и шли в одном направлении, не обращая никакого внимания на людей и препятствия.

Через некоторые селения проходило до 300 белок в час, а двигались они примерно со скоростью 30 км в сутки.

И каждая белка несла на себе сотни клещей, зараженных вирусами энцефалита.

На следующий, 1957 год в Приморье вспыхнула эпидемия энцефалита - напитавшись на белках, клещи набросились на людей… В конечном же счете виновато Солнце.

Его высокая активность «размножила» белок, размножила и активизировала вирусы энцефалита, а затем обезумевшие под действием Солнца белки разнесли болезнь по обширной территории. Выходит, что Солнце повинно в распространении опасной эпидемии. И это, увы, далеко не единственный случай.

Виновник установлен. Неясно, к сожалению, как он действует. Может быть, тут замешаны магнитные поля?

Первые шаги магнитобиологии

Магнитные свойства некоторых тел были известны еще древним египтянам и халдеям. Ни причин магнетизма, ни механизма действия магнита они не знали, а потому приписывали магнитам самые фантастические свойства.

Некоторые считали, что магнит - сильнейший яд, а лучшее противоядие против него - чесночный сок. Другие утверждали, что с помощью магнита можно достичь бессмертия.

О лечебных свойствах магнитов упоминают знаменитые ученые древности Аристотель и Плиний. А основоположник медицины римский врач III века н. э. Гален рекомендовал магнит как отличное… слабительное средство!

Среди этих наивных заблуждений обращают на себя внимание заявления арабского ученого Авиценны (XI век) и европейского ученого Альберта Великого (XIII век).

Первый из них утверждал, что магнит благоприятно действует при заболеваниях селезенки. По мнению второго, если носить магнитный браслет на левой руке, сны становятся спокойными и излечивается безумие. Вполне современно звучит и заявление французского врача Марцелла из Бордо (IV в. н. э.), утверждавшего, что магнит успокаивает головную боль.

Спор о лечебных свойствах магнита растянулся на века.

Не обошел эту тему и знаменитый Гильберт, английский ученый XVII века, с упоминания которого начинаются главы о магнетизме многих учебников физики.

Магнитные поля влияют на нервную систему человека.

С именем австрийского врача Месмера (XVIII век) связаны различные удивительные случаи исцеления магнетизмом. Месмер впервые ввел в обиход несколько неопределенный термин «животный магнетизм», понимая под этим главным образом гипнотическое влияние одного человека на другого.

Парижская академия наук в 1784 году поспешила объявить учение о животном магнетизме антинаучным, а самого Месмера - шарлатаном. Кстати сказать, почти одновременно с этим та же академия заявила, что «камни с неба падать не могут», а рассказы очевидцев падения метеоритов обьявила фальсификацией.

Авторитет ученых всегда ценился весьма высоко, увы, даже тогда, когда они заблуждались. Потребовалось более ста лет, прежде чем исследования лечебных свойств магнитов снова возобновились. Между прочим, к тому времени Парижская академия наук признала ошибочным и осуждение месмеризма и отрицание метеоритов.

В конце прошлого века среди ученых, занимавшихся изучением лечебных свойств магнита, были такие авторитетные медики, как Боткин и Шарко. Они сами ставили опыты, которые убедили их в несомненном действии магнитных полей на организм.

В одних случаях магниты вызывали ощущение зуда, «ползание мурашек», в других - возбуждали или, наоборот, успокаивали боль. Были и такие случаи, когда магниты излечивали параличи и судороги. При этом постоянные магниты действовали столь же успешно, как и равные им по силе электромагниты.

Этот очень краткий экскурс в историю науки показывает, что действие магнитных полей на организм всегда волновало ученых. И если за все предшествующие века в этой области знания дело свелось, в сущности, лишь к накоплению фактов, подчас весьма противоречивых, то в этом повинна сложность проблемы. Вот почему, имея столь длительную во времени историю, магнитобиология - наука о действии магнитных полей на организмы - сегодня, по существу, делает лишь первые шаги.

В ваших руках обыкновенный школьный постоянный магнит. Вы подносите его к железным опилкам, и они, оторвавшись от стола, облепляют полюс магнита.

Физическая подоплека этого всем знакомого опыта очевидна.

В близком присутствии магнита опилки намагничиваются, то есть сами становятся маленькими магнитиками.

Энергия магнитного взаимодействия заставила опилки преодолеть силу тяжести и «прилипнуть» к магниту.

Следовательно, причина всех описанных явлений - энергия магнитного поля.

Но вот другой пример. Вы нажимаете кнопку электрического звонка у входной двери. Электрическая цепь замкнулась, заработал электромагнит, колеблющий язычок звонка. Никто не скажет, что в этом случае энергия нажима кнопки вашим пальцем перешла в энергию колебания язычка звонка. Вы нажимаете на кнопку звонка очень слабо, и энергии этого нажима явно недостаточно для объяснения полученного эффекта. Здесь взаимодействие не энергетическое, а информационное. Нажав кнопку, вы дали сигнал электрическому механизму звонка, а звонит он не за счет энергии вашего нажима, а за счет своих «внутренних» энергетических ресурсов, точнее, за счет энергии электросети.

Я привел эти примеры неспроста. Когда магнитное поле действует на организм (а такое воздействие - твердо установленный факт), возможно двоякое объяснение этого эффекта: или он, этот эффект, получился в результате непосредственного преобразования энергии магнитного поля, или магнитное поле сыграло роль «сигнала», побудившего к действию внутренние энергетические ресурсы организма.

Короче, приходится, по-видимому, делать выбор между двумя объяснениями: биомагнетизм (то есть воздействие магнитного поля на организмы) имеет энергетическую природу или информационную.

Факты показывают, что «энергетическая» гипотеза неспособна объяснить многие бесспорно реальные явления.

Оказывается, чрезвычайно слабые магнитные поля вызывают весьма заметные эффекты, тогда как к сверхсильным магнитным полям организм остается подчас совершенно «равнодушным». Напрашивается такая аналогия: от слишком сильного звука лопаются барабанные перепонки - и человек глохнет, тогда как даже слабые звуки красивой мелодии вызывают у нас приятное ощущение.

Собственно, все, что до сих пор говорилось о магнитобиологии, было предисловием. Познакомимся теперь (очень кратко!) с некоторыми бесспорными фактами, добытыми магнитобиологией, и попробуем найти для них разумное объяснение. А потом посмотрим, какое отношение все это имеет к гелиобиологии.

Начнем с очень сильных магнитных полей, напряженность которых измеряется сотнями и тысячами эрстед.

Лучший способ проверить, действуют ли такие поля на организм, - это попробовать вызвать магнитным полем смерть.

Опыты такого рода удавались не раз. Магнитным полем напряженностью в 40 тысяч эрстед убивали мушек-дрозофил. Поле вчетверо слабее оказалось достаточным, чтобы убить молодых мышей. Любопытно, что при этих экспериментах самки оказались гораздо выносливее самцов.

Замечено также, что мощные магнитные поля сильнее всего воздействуют на центральную нервную систему, почки, легкие и некоторые другие органы.

Расчеты показывают, что магнитное поле напряженностью в 200 тысяч эрстед наполовину затормозит ток крови у человека, а при напряженности в 2 миллиона эрстед ток крови почти полностью будет приостановлен.

Сильные магнитные поля могут при иных обстоятельствах оказывать и благоприятное воздействие на человека.

Например, поле в несколько тысяч эрстед тормозило развитие злокачественных опухолей у мышей. Если комбинировать магнитное поле напряженностью 300–600 эрстед с воздействием сантиметровых радиоволн, раковые опухоли подопытных крыс исчезали через несколько дней.

Замечено также, что люди, работающие в повышенном магнитном поле, реже, чем другие, болеют раком.

Правда, военные моряки, служившие на минных тральщиках, жалуются, что повышенное магнитное поле внутри корабля вызывает у них головные боли и бессонницу.

Известны и другие случаи, когда люди, находившиеся половину рабочего времени в магнитном поле напряженностью в сотни и тысячи эрстед, теряли аппетит, быстро утомлялись и жаловались на боли в области сердца.

Сильные магнитные поля заметно действуют на генетический, наследственный аппарат растений и животных.

Меняется при этом численность потомства, к тому же это потомство приобретает новые черты, отсутствовавшие у родителей.

Даже приведенные примеры показывают, что воздействие на организмы сильных магнитных полей бесспорно.

К сожалению, механизм этого воздействия пока неясен.

Возможно, что отчасти эффекты вызваны превращением энергии магнитного поля, отчасти его информационным воздействием.

Посмотрим теперь, как действуют на организмы слабые и сверхслабые магнитные поля.

Земной шар - слабый магнит. Напряженность земного магнитного поля измеряется всего десятыми долями эрстеда.

Но этого, по-видимому, вполне достаточно для ориентации птиц и других животных.

Всем известны поразительные способности перелетных птиц. Каждую осень они покидают насиженные гнезда, улетают за тысячи километров, чтобы весной вернуться не только в ту же страну или в тот же район, но и в то же гнездо. Как птицы находят правильный путь, как они ориентируются в полете? Более ста лет ученые бьются над решением этой проблемы, и небезуспешно. Видимо, у птиц есть разные средства ориентации. Некоторые опыты, поставленные в планетариях, показывают, что птицы в полете ориентируются и по созвездиям. Но главное, что указывает птицам правильный путь, - это невидимое, но как-то ощущаемое ими земное магнитное поле.

К голубям подвязывали маленькие магнитики. И эти «помехи» путали птиц, они тотчас сбивались с правильного пути, многие из них не возвращались домой. Когда же некоторых птиц помещали в искусственное магнитное поле напряженностью примерно 1 эрстед, заметно повышалась их двигательная активность. Значит, птицы реагируют на слабые магнитные поля. И не только птицы.

Недавно проведены многочисленные опыты, показавшие, что в магнитном поле Земли ориентируются одноклеточные, черви, моллюски. Примечательно, что эти примитивные организмы тотчас же реагировали на изменение искусственного магнитного поля всего на 0,05 эрстед (ведь примерно таковы же колебания земного магнитного поля при магнитных бурях!). А вот на колебания в десятки раз большие те же животные реагировали медленно и как бы неохотно.

Ориентируются в земном магнитном поле жуки, мухи, кузнечики и другие насекомые. Даже растения небезразличны к слабому земному магнетизму.

В 1960 году советские биологи А. В. Крылов и Г. А. Тараканова заметили странное явление. Если проращивать в темноте при температуре 18–25° семена кукурузы, ориентированные корешком к южному магнитному полюсу, то они прорастают на сутки раньше, чем обычно, и рост становится более быстрым, чем при повороте корешка к северному магнитному полюсу.

Вообще для растения есть что-то «притягательное» в южном магнитном полюсе. Проростки семян, направленные к северному магнитному полюсу Земли, по мере роста изгибаются на 180° и тянутся в обратном направлении!

Это явление, подмеченное не только на семенах кукурузы, но и на семенах других растений, получило наименование магнитотропизма растений. Хотя новые опыты снова доказали, что растения реагируют на слабые магнитные поля, механизм этого воздействия пока неясен.

Магнитобнология - новая и бурно развивающаяся область естествознания. Она теперь главным образом накапливает факты, а где возможно, ищет теоретические объяснения. Второе пока удается меньше, чем первое. И не удивительно - бурное развитие магнитобиологии началось всего десять лет назад. Для основной же темы этой книги важен твердо установленный факт - слабые магнитные поля заметно действуют на организмы.

А теперь обратимся к магнитным полям очень слабым и тем не менее играющим огромную роль в жизни животных и человека. Речь идет о магнитных полях сердца и мозга, тех самых полях, которые помогают врачам получать кардиограммы и энцефаллограммы, регистрирующие работу сердца и мозга.

Напряженность магнитного поля сердца человека в миллион раз меньше напряженности магнитного поля Земли, а значит, составляет всего десятимиллионные доли эрстеда.

Оно переменно, и его изменчивость вызвана пульсацией сердца. Еще слабее магнитное поле человеческого мозга - его напряженность составляет миллиардные доли эрстеда.

Для таких полей колебания в сотые доли эрстеда (таковы, повторяем, магнитные бури) - величина очень большая.

Значит, заранее как будто ясно, что магнитные бури должны влиять на нервную и сердечно-сосудистую системы человека. И не только человека - «собственные» магнитные поля животных, как правило, столь же слабы, как и у нас с вами.

Обращает на себя внимание еще один факт - в районе Курской магнитной аномалии наблюдается повышенная двигательная активность птиц. Замечено также, что в периоды магнитных бурь повышается двигательная активность насекомых. Снова напрашивается вывод - магнитные бури должны так или иначе влиять на весь органический мир Земли.

Иногда, пытаясь разгадать механизм взаимосвязи магнитных сил и организма, некоторые исследователи «опускаются» на уровень клетки или даже еще «ниже» - на молекулярный и атомный уровни. В клетках, молекулах и атомах они пытаются найти разгадку таинственных явлений.

Между тем установлено, что наибольшей чувствительностью к магнитным полям обладает весь организм, меньшей - его органы и клетки, еще гораздо меньшей - его молекулы и атомы. Как давно уже подмечено, всякий организм всегда есть нечто большее, чем простая сумма слагающих его частей. В этом, в частности, заключается коренное отличие живого от неживого. В этом, быть может, разгадка того с первого взгляда непонятного факта, что магнитные поля, заметно действуя на организм в целом, подчас не оставляют никаких следов на молекулярном и даже клеточном уровнях.

О магнитобиологии можно рассказывать долго. Но, боясь отвлечься от главной темы, мы рекомендуем тем, кто серьезно заинтересовался магнитобиологией, две интересные книги.

Мы еще не раз вспомним о магнитных бурях и их последствиях. Последствия эти станут понятнее, если разобраться в некоторых необычных свойствах, казалось бы, хорошо всем знакомой воды.

Космос в капле воды

Внешне опыты казались бессмысленными. Ежедневно в один и тот же час в одном и том же количестве воды растворялось одно и то же количество некоторых соединений висмута. Экспериментатор, профессор Флорентийского университета Джорджио Пиккарди, следил за реакцией осаждения растворенных в воде веществ. И так изо дня в день, из года в год на протяжении десятилетий!

Странные эксперименты начались в 1951 году. Сначала Пиккарди действовал в одиночку. Но позже, по его просьбе, точно такие же эксперименты и в тот же физический момент стали ежесуточно проводить ученые многих стран.

В конце концов общее число экспериментов приблизилось к миллиону, и почти весь земной шар превратился в исполинскую лабораторию по проведению непонятных опытов.

И в самом деле, неужели при строгом соблюдении условий опыта результаты каждый раз будут разными? А если они тождественны, к чему тогда эксперимент?

Соотечественник Галилея профессор Пиккарди занимался и занимается доныне отнюдь не бессмыслицей. Разумеется, абсолютно точно повторить любой опыт невозможно - тут неизбежны случайные, пусть очень малые ошибки. Но именно потому, что эти ошибки случайны, их отклонение от намеченной программы в ту или иную сторону равновероятны. А значит, при очень большом количестве опытов произойдет взаимная компенсация, уничтожение ошибок, и в среднем опыт должен давать одни и те же результаты.

На самом же деле результаты различны. И это нельзя объяснить случайностью. Более того, результаты опытов Пиккарди и его многочисленных коллег, как это ни поразительно, зависят от солнечной активности и от других космических причин. А все дело в том, что вода, самая обыкновенная, всем знакомая вода, оказалась веществом очень сложным, весьма чутко отзывающимся на космические процессы.

Еще в 1933 году известные английские ученые Дж. Бернал и Фаулер высказали гипотезу, что вода имеет псевдокристаллическую структуру, состоит как бы из жидких кристаллов.

Как обычно, смелая идея многим показалась абсурдом - гораздо привычнее видеть в воде беспорядочное скопление частиц. Но позже гипотеза о псевдокристаллической структуре воды получила опытные подтверждения.

Выяснилось, что эта структура очень неустойчива и в обычной воде почти незаметна. Но если воду, как говорят физики, «активировать», то есть обработать магнитным полем, она приобретает сравнительно устойчивую псевдокристаллическую структуру, а вместе с ней и новые, необычные свойства. Сама же активация воды - дело простое. Достаточно, скажем, по стеклянной трубке диаметром в несколько миллиметров, помещенной между полюсами магнита, пропустить обычную воду, и эта вода превратится в активированную.

С первого взгляда в воде как будто никаких изменений не произошло. Тот же химический состав, тот же внешний облик. Но «намагниченная» вода дает гораздо меньше накипи, чем обычная вода, и это уже давно используют в технике. Меняются электрические свойства воды - ее диэлектрическая проницаемость. Кстати сказать, эта проницаемость становится наибольшей при обработке воды магнитным полем напряженностью 1500 эрстед.

Активированная вода поглощает свет несколько иначе, чем обычная.

Самое же любопытное, что на намагниченную воду чутко реагируют все живые существа. Приведем лишь несколько примеров.

Если полить семена подсолнуха, кукурузы и сои активированной водой, прорастание семян пойдет в ускоренном темпе. У мышей, пьющих намагниченную воду, увеличивались надпочечники и уменьшалась селезенка. А морские свинки при этом быстро теряли вес. Самое же замечательное то, что влияние активированной воды на живые организмы наиболее заметно в периоды повышенной солнечной активности!

А теперь вернемся к опытам Пиккарди. Всякий раз он брал две одинаковые пробирки, заливал их одинаковым количеством воды и растворял в пробирках одинаковое количество оксихлорида висмута. Но в одной пробирке была вода обычная, а в другой активированная. Кроме того, иногда он изолировал пробирки от внешних космических влияний тонким металлическим экраном. А затем строились графики, на горизонтальной оси которых откладывались дни и годы, а на вертикальной - скорости осаждения растворенных солей висмута. Результаты получились очень любопытными.

Примерно в 70 случаях из 100 изоляция пробирки от внешних влияний приводила к ускорению реакции осаждения. При прочих же равных условиях в активированной воде те же реакции идут гораздо быстрее, чем в обычной.

Особенно же ускорялись эти процессы в дни и годы активного Солнца. И так получалось не только у Пиккарди, но и у всех его коллег.

Как уже не раз говорилось, солнечная активность сказывается прежде всего в колебаниях магнитного поля Земли. Но если вода реагирует на магнитные поля, если они, эти поля, меняют ее внутреннюю структуру, то, очевидно, и колебания магнитного поля Земли не могут для воды остаться бесследными. Чувствительная к любым магнитным влияниям, вода с увеличением напряженности земного магнитного поля становится, грубо говоря, более «кристаллической», а это, в свою очередь, ускоряет осаждение растворепных в воде веществ.

Конечно, это только грубая, приближенная схема. На самом деле все сложнее и тоньше. Чтобы построить строгую теорию, нужны новые и новые эксперименты. Но уже в первых опытах Пиккарди неожиданно выявилось, что, кроме Солнца, на скорость реакции осаждения заметно влияют и другие космические причины.

Ну разве не удивительно, что наименьшая скорость осаждения ежегодно наблюдается весной, в марте, а наибольшая - осенью, в сентябре? С солнечной активностью это никак не связано - от земных времен года она не зависит. Нет связи и с орбитальным движением Земли вокруг Солнца - ведь земная орбита мало отличается от окружности. И тут Пиккарди осенила смелая мысль - а не связан ли наблюдаемый странный эффект с движением Солнца и Земли вокруг центра Галактики?

Геликоида - путь Земли в межзвездном пространстве.

Из книги Удивительная биология автора Дроздова И В

Дыхание биосферы Мы более склонны распространять на Вселенную земные законы, нежели в земном и обыденном замечать проявления законов космоса. В свое время А. Чижевский с горечью писал: «Как случается всегда, когда делается какое-либо серьезное научное открытие… стали

Из книги Общая экология автора Чернова Нина Михайловна

10.3. Стабильность биосферы Основой самоподдержания жизни на Земле являются биогеохимические круговороты. Процессы созидания органического вещества, аккумулирующего энергию, и противоположные процессы его разложения с высвобождением этой энергии одинаково необходимы

Из книги Новейшая книга фактов. Том 1 [Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина] автора

10.4. Развитие биосферы Возраст Земли, определяемый методами изотопной геологии, составляет около 5 млрд лет. Наиболее принятые показатели 4,6–4,7 млрд лет. Приблизительно таков же возраст Солнца и других планет Солнечной системы. По современным представлениям, они

Из книги Антропологический детектив. Боги, люди, обезьяны... [с иллюстрациями] автора Белов Александр Иванович

Из книги Беседы автора Дмитриев Алексей Николаевич

«КОСМИЧЕСКИЕ ЯЙЦА», ИЛИ ОТКУДА ПОЯВИЛИСЬ ЛЮДИ? Вместо предисловия Ученые начали обсуждать возможность возникновения жизни на Земле из химических соединений немногим более столетия назад. Под микроскопами того времени живая клетка казалась всего лишь пузырьком,

Из книги Экология [Конспект лекций] автора Горелов Анатолий Алексеевич

Из книги Нерешенные проблемы теории эволюции автора Красилов Валентин Абрамович

3.3. Эволюция биосферы Эволюцию биосферы изучает раздел экологии, который называется эволюционной экологией. Следует отличать эволюционную экологию от экодинамики (динамической экологии). Последняя имеет дело с короткими интервалами развития биосферы и экосистем, в то

Из книги Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина автора Кондрашов Анатолий Павлович

ЭВОЛЮЦИЯ БИОСФЕРЫ Понятие биосферы тесно связывает жизнь с внешними оболочками Земли - атмосферой, гидросферой и верхней частью коры, где есть живые существа и продукты их жизнедеятельности. Сами эти оболочки - в значительной мере продукт жизнедеятельности, в их

Из книги Распространненость жизни и уникальность разума? автора Мосевицкий Марк Исаакович

Что представляют собой космические лучи? Космические лучи – это поток стабильных частиц высоких энергий (от одного до триллиона гигаэлектронвольт, что приблизительно в тысячу раз выше энергии частиц, вырабатываемых ускорителями), приходящих на Землю из мирового

Из книги На грани жизни автора Денков Веселин А.

8.2.3. Возможные космические катастрофы, которые способны уничтожить жизнь на Земле Вначале упомянем о событиях, которые могут коснуться именно Земли.Установлено, что постоянно происходит замедление вращения Земли вокруг своей оси (см. Раздел 2.2). Через пока трудно

Из книги Современное состояние биосферы и экологическая политика автора Колесник Ю. А.

Космические горизонты анабиоза и гибернации Мы живем в эпоху научно-технической революции. Человек создал сложные космические аппараты, которые помогли ему вырваться из цепких объятий земного притяжения и проникнуть в необъятный космос.Нога человека ступила на Луну,

Из книги автора

1.1. Определение биосферы Что же представляет собой биосфера?Напомним некоторые ее характерные признаки.В современной науке имеется много определений биосферы. Приведем лишь некоторые. «Биосфера – особая, охваченная жизнью оболочка Земли» (Вернадский, 2003,

Из книги автора

1.2. Характеристика и состав биосферы Впервые понятие «биосфера» (от греч. bios – жизнь и sphaira – шар) в биологию было введено Ж. Ламарком в начале XIX в. Он подчеркивал, что все вещества, находящиеся на поверхности земного шара и образующие его кору, сформировались благодаря

Из книги автора

5.1. Границы биосферы Биосфера является одним из трех (гидросфера, атмосфера и литосфера) компонентов климатической системы. Ее можно уподобить тонкой пленке, покрывающей поверхность нашей планеты. Плотность органического вещества равна 1 г/см2. Для сравнения, средняя

Из книги автора

5.2. Основные функции биосферы В составе биосферы присутствуют вещества, которые различаются между собой по ряду признаков: природные вещества, живое вещество, биогенное вещество, косное вещество, биокосное вещество, органическое вещество, биологически активное

Из книги автора

8.4. Генетика и эволюция биосферы Общепризнанно, что теория Ч. Дарвина о происхождении видов эволюционным путем совершила переворот в мировоззрении не только ученых, но и многих миллионов людей. Это был сильнейший удар метафизическому взгляду на природу, который показал,

Структура биосферы

По своему составу, строению и организованности биосфера - это сложная оболочка, которая включает в себя:

Живое вещество - совокупность живых организмов планеты, включая человека;

Биогенное вещество, созданное в процессе жизнедеятельности организмов (газы атмосферы, уголь, нефть, известняки и т.д.);

Косное вещество, сформированное без участия жизни, к нему относятся атмосфера, гидросфера и литосфера;

Биокосное вещество - результат взаимодействия жизнедеятельности организмов и небиологических процессов (например, почва, озерная вода);

Вещество космического происхождения.

Общую массу живых организмов оценивают в 2,43 10 12 т. Биомасса организмов, обитающих на суше, на 92,2% представлена зелеными растениями и на 0,8% - животными и микроорганизмами. Напротив, в океане на долю растений приходится 6,3%, а на долю животных и микроорганизмов - 93,7% всей биомассы. Жизнь сосредоточена главным образом на суше. Суммарная биомасса океана составляет всего 0,03 10 12 т, или 0,13% биомассы всех существ, обитающих на Земле.

В распределении живых организмов по видовому составу наблюдается важная закономерность. Из общего числа видов 21% приходится на растения, хотя их вклад в общую биомассу составляет 99%. Среди животных 96% видов - беспозвоночные и только 4% - позвоночные, из которых только десятая часть приходится на млекопитающих. Таким образом, в количественном отношении преобладают формы, стоящие на относительно низком уровне эволюционного развития.

Масса живого вещества составляет всего 0,01-0,02% от косного вещества биосферы; если его равномерно распределить по поверхности Земли, оно покроет ее слоем всего в 2 см толщиной. Но при этом именно живое вещество играет ведущую роль в биогеохимических процессах благодаря энергетической функции. Ведь живые организмы способны черпать из окружающей среды вещества и энергию, необходимую им для обмена веществ и осуществления всех других своих функций.

Исходной основой существования биосферы и происходящих в ней биогеохимических процессов является астрономическое положение нашей планеты, в первую очередь ее расстояние от Солнца и наклон земной оси к плоскости земной орбиты. Пространственное расположение Земли в основном определяет климат на планете, а последний, в свою очередь, - жизненные циклы всех существующих на ней организмов. Основным источником энергии для всех геологических, химических и биологических процессов на нашей планете является Солнце. Среди космических факторов особенно серьезное влияние на биосферу оказывают природно-радиацион-ный фон и магнитные поля.



Природно-радиационный фон слагается из трех компонентов:

1) природные радионуклиды (уран, торий);

2) продукты их радиоактивного распада, которые находятся во всех элементах земной коры, почве, воде, атмосфере и поглощаются всеми живыми организмами;

3) высокоэнергетические излучения, попадающие на Землю из космического пространства в виде потока фонового излучения.

Вопреки нашим страхам перед радиоактивностью, которые усилились после аварии на Чернобыльской АЭС, оказывается, что без природно-радиационного фона нормальное существование живых организмов невозможно. Это следы эпохи возникновения и первоначального существования жизни, когда более высокий уровень радиоактивности служил первым организмам дополнительным источником энергии.

Биосфера также погружена в океан электромагнитных полей космического, земного и биогенного происхождения. Практически все процессы жизнедеятельности связаны с электромагнитными полями, диапазон которых лежит в широком интервале длин волн. Многие фундаментальные биологические процессы невозможны без переноса электрических зарядов, вызывающих магнитное поле, поэтому любой организм представляет собой генератор электромагнитных сигналов.

Электромагнитный фон биосферы является эволюционным фактором, который влияет на биологические ритмы. Космические излучения, генерируемые ядром Галактики, нейтронными звездами, ближайшими звездными системами, Солнцем и планетами, пронизывают биосферу и все пространство в ней. В этом потоке разнообразных излучений основное место принадлежит солнечному излучению, которое оказывает постоянное воздействие на все явления на Земле.

Еще В.И. Вернадский писал о том, что Солнцем в корне переработан и изменен лик Земли, пронизана и охвачена вся биосфера. Более того, сама биосфера является проявлением его излучений. В ней происходит превращение солнечной энергии в новые формы земной свободной энергии (биогеохимическую энергию живого вещества биосферы), которая в корне меняет историю и судьбу нашей планеты. Таким образом, земная жизнь не является чем-то случайным. Напротив, она входит в космопланетарный механизм биосферы.

Более подробно солнечно-земные связи рассмотрел последователь Вернадского, основатель гелиобиологии А.Л. Чижевский. Он отмечал, что все самые разнообразные и разнохарактерные явления на Земле - и химические превращения земной коры, и динамика самой планеты и составляющих ее частей (атмосферы, гидросферы и литосферы) - протекают под непосредственным воздействием Солнца. Оно является основным (наряду с космическими излучениями и энергией радиоактивного распада в недрах Земли) источником энергии, причиной всего на Земле - от легкого ветерка и произрастания растений до смерчей и ураганов и умственной деятельности человека.

Связь между циклами солнечной активности и процессами в биосфере была замечена еще в XVIII в. Тогда английский астроном В. Гершель обратил внимание на связь между урожаями пшеницы и числом солнечных пятен. В конце XIX в. профессор Одесского университета Ф.Н. Шведов, изучая срез ствола столетней акации, обнаружил, что толщина годичных колец изменяется каждые 11 лет, как бы повторяя цикличность солнечной активности. Но лишь в XX в. удалось понять, что солнечная активность связана с электромагнитными и другими колебаниями мирового пространства. Установил этот факт Чижевский, который обобщил опыт предшественников и подвел под эти эмпирические данные твердую научную базу. Он считал, что Солнце диктует ритм большинства биологических процессов на Земле, и когда на нем образуется много пятен, появляются хромосферные вспышки и усиливается яркость короны (это характерно для периодов активного Солнца), на нашей планете разражаются эпидемии, усиливается рост деревьев, особенно сильно размножаются вредители сельского хозяйства и микроорганизмы - возбудители различных болезней. Подобное заключение было сделано после изучения наложения друг на друга графиков солнечной активности и активности биосферы.

Биосфера – живая открытая система. Она обменивается энергией и веществом с внешним миром. В данном случае внешний мир – это безбрежное космическое пространство.

Извне на Землю приходят солнечное и электромагнитное излучение; так называемый солнечный ветер, представляющий собой сгустки плазменных облаков, непрерывно испускаемые Солнцем с переменной интенсивностью; галактические и солнечные космические лучи, а также потоки метеоритов.

От Земли в космос уходит собственное тепловое излучение, часть обратного рассеянного излучения Солнца (альбедо), а также потоки вещества верхней атмосферы Земли.

Таким образом, взаимодействие «биосфера–космос» представлявляет собой сложную динамическую систему, находящуюся в состояню подвижного равновесия.

Пограничная область между системой «Земля–космос» проходит на расстоянии 50–60 тыс. км над поверхностью Земли. Именно на такое расстояние простирается граница геомагнитного поля магнитосферы Земли. Процессы взаимодействия магнитосферы с веществом солнечной плазмы – солнечным ветром и космическими лучами – изучаются, и исследуется в рамках магнитной гидродинамики – современной космической науки, совместно учитывающей сложные явления пограничной среды в соответствии с уравнениями электромагнитного поля Максвелла, с одной стороны, и уравнениями гидродинамики, с другой.

В свое время академик В.В. Вернадский подчеркивал, что существует тесная взаимосвязь между явлениями, происходящими на Земле, и процессами космического порядка. Сейчас уже нет никаких сомнений в том, что среда нашего обитания – не только Земля и даже не только Солнечная система, но и вся окружающая нас Вселенная, неотъемлемой частью которой мы являемся.

В связи с этим при изучении земных явлений необходимо исходить из системного подхода в науках о Земле, что диктуется не только обнаружением тех или иных конкретных связей между земными и космическими явлениями, но и общими принципами современного естествознания. Целостное восприятие мира – необходимая черта современного стиля научного мышления.

Эпоху, в которой мы живем, по праву называют космической эрой, эпохой освоения космоса. И дело не только в осуществлении космических полетов и успешном развитии космической техники. Освоение космоса, все более глубокое познание закономерностей космических явлений, широкое вовлечение космоса в сферу человеческой практики – настоятельная потребность современного этапа в развитии земной цивилизации.

Становится ясно, что само возникновение и существование биосферы и человека тесно связано с физическими условиями во Вселенной, а также с особенностями течения физических процессов на Земле, в непосредственно окружающей нас области космоса и во Вселенной в целом.

Земные явления бесчисленными нитями связаны с физическими процессами, протекающими в космическом пространстве. Во-первых, во многих земных явлениях находят свое отражение общие закономерности космического порядка. Во-вторых, существует целый ряд непосредственных связей и зависимостей, определяющих влияние тех или иных космических факторов на нашу планету, в том числе и на биосферу. Таких факторов очень много.

Например, в результате вращения Земли дважды в сутки наблюдаются морские приливы и отливы под действием гравитационного притяжения Луны. Ясно, что это явление важно для обитателей приморских районов Земли.

Положение Земли в пространстве относительно Солнца приводит к суточной смене дня и ночи и естественной смене времен года в разных районах Земли, что влияет на все стороны жизни биосферы.

Важную роль сыграли факторы космического порядка в процессе становления жизни на Земле. В частности, многие характерные особенности живых организмов, в том числе и организма человека, непосредственно связаны с величиной силы тяжести на Земле, характером солнечного излучения, положением нашей планеты в Солнечной системе, а также положением Солнечной системы в нашей Галактике.

Так, например, строение органов зрения человека и животных обусловлено тем, что Солнце интенсивно излучает в оптическом диапазоне и это излучение проходит сквозь атмосферу Земли. Не случайно и то, что человеческий глаз наиболее чувствителен к желто-зеленым лучам, ибо именно эти лучи в составе солнечного света имеют наибольшую интенсивность.

Есть основания предполагать, что солнечная деятельность оказывает влияние на биосферу нашей планеты и в настоящее время.

Так, подмечен целый ряд статистических зависимостей, которые обнаруживают связь колебаний солнечной активности с эпидемическими, сердечно-сосудистыми и нервно-психическими заболеваниями, обострением хронических болезней, урожайностью и ростом годовых колец у деревьев. В связи с этим возникла новая область науки – гелиобиология, главная задача которой – выяснить физические механизмы воздействия Солнечной системы на процессы, протекающие в биосфере. Это одна из актуальных проблем современного естествознания, имеющая огромное практическое значение для человечества.

Изучение космического пространства с помощью спутников и космических аппаратов в последние десятилетия позволило существенно продвинуться в исследовании механизмов солнечно-земных связей, в первую очередь в выяснении целого ряда циклических процессов на Солнце и их проявлений в земных условиях. Прежде всего, речь идет о 27-дневных (в среднем) ритмах, связанных с вращением Земли относительно своей оси, с 11-летним (в среднем) и 22-летним (в среднем) циклами солнечной активности, проявляющимися более или менее синхронно в длительных временных рядах по большому числу визуальных характеристик Солнца в виде солнечных пятен, факелов, флокулл, хромосферных вспышек и др.

Современная гелиобиология подтверждает факт влияния ритмов Солнца на земные процессы, однако выясняется, что механизмы такого влияния являются гораздо более сложными, чем это представлялось в первой половине XX в. основателям космической биологии В.В. Вернадскому и А.Л. Чижевскому .

В то же время целый ряд конкретных вопросов солнечно-земных связей уже нашел решение как с точки зрения изучения материальных носителей таких связей (главным образом солнечных корпускулярных потоков), так и самих их механизмов. В частности, к ним относятся:

Вопросы изучения причин вариации магнитного поля Земли, в том числе и появления магнитных бурь на Земле;

Резкие изменения состояния ионосферы, нарушающие процесс распространения радиоволн на Земле;

Появление полярных сияний, земных электрических токов, процессов изменения атмосферного электричества и др.

Ясно, что необходимо дальнейшее изучение влияния всех установленных геофизических явлений на биосферу, в том числе и организм человека.

Человеческий организм – сложная и высокосовершенная саморегулирующаяся система, которая стремится к равновесию с окружающей средой, включающей в себе факторы космического порядка. Всякое нарушение данного равновесия, связанное с изменением внешних условий, вызывает соответствующую перестройку в деятельности организма.

Эту закономерность использует, например, современная медицина в лечебных целях. Воздействуя на организм климатическими, бальнеологическими и другими природными факторами, врачи сознательно добиваются таких целенаправленных изменений, которые повлекли бы за собой ликвидацию определенных заболеваний. Возможности подобного метода еще далеко не исчерпаны. Дальнейшее изучение влияния различных природных, в том числе и космических, факторов на живые организмы открывает новые пути избавления человека от различных недугов.

В последние годы идей о наличии многосторонних космо-земных связей подтверждены в работах по влиянию геомагнитного поля и солнечной активности на ритмы артериального давления, частоту сердечно-сосудистых заболеваний, поведение эритроцитов, свертываемость крови, содержание гемоглобина, гомеостаз живых организмов, почвообразование, барическое давление и циркуляцию атмосферы, осадки, генезис рельефа Земли и т.д. Таким образом, периодичность солнечной активности является одним из важнейших факторов, влияющих на жизнь на Земле.

Биосфера и ноосфера

Факторы эволюции и этапы развития биосферы. Эволюция биосферы на протяжении большей части ее истории осуществлялась под влиянием двух главных факторов:

1) естественных геологических и климатических изменений на планете;

2) изменений видового состава и количества живых существ в процессе биологической эволюции.

На современном этапе в третичном периоде основным фактором, определяющим эволюцию биосферы, стало развивающееся человеческое общество.

Эволюция органического мира прошла несколько этапов. Первый этап – возникновение первичной биосферы с присущим ей биотическим круговоротом, второй –усложнение структуры биотического компонента биосферы в результате появления многоклеточных организмов. Эти два этапа эволюции, протекавшие в соответствии с чисто биологическими закономерностями жизнедеятельности и развития, получили название биогенеза.

Третий этап связан с возникновением человеческого общества. Разумеется, по своим намерениям деятельность людей в масштабе биосферы способствует превращению последней в ноосферу. На данном этапе эволюция протекает под определяющим воздействием человеческого сознания и связанной с ним производственной (трудовой) деятельности людей, что соответствует периоду ноогенеза.

Представления о том, что живые существа взаимодействуют с внешней средой, изменяя ее, возникли давно. Этому способствовали наблюдения за природными явлениями. В начале XVII в. зачаточные представления о биосфере имели место в трудах голландских ученых Б. Варениуса и X. Гюйгенса .

Век спустя французский естествоиспытатель Ж. Кювье заметил, что живые организмы могут существовать только путем обмена веществ с внешней средой. Другие исследователи – французский химик Ж.Б. Дюма и немецкий химик Ю. Либих выяснили значение зеленых растений в газовом обмене земного шара и роль почвенных растворов в питании растений. Впоследствии многие ученые изучали взаимоотношения организмов со средой их обитания, что в итоге привело к современному пониманию биосферы.

В частности, Ж.Б. Ламарк в своей книге «Гидрогеология» посвятил целую главу влиянию живых организмов на преобразование земной поверхности. Он писал:

В природе существует особая сила, могущественная и непрерывно действующая, которая обладает способностью образовывать сочетания, умножать их, разнообразить их. Влияние живых организмов на вещества, находящиеся на поверхности земного шара и образующие его внешнюю кору, весьма значительно, потому что эти существа, бесконечно разнообразные и многочисленные, с непрерывно меняющимися поколениями, покрывают своими постепенно накапливающимися и все время отлагающимися остатками все участки поверхности земного шара.

Из этих высказываний следует правильная оценка огромной геологической роли организмов и продуктов их разложения.

Выдающийся натуралист и географ А. Гумбольдт в своем сочинении «Космос» дал синтез знаний того времени о Земле и космосе и на основании этого развил идею о взаимосвязи всех природных процессов и явлений.

Существование биосферы Земли как целостной природной системы выражается в первую очередь в круговороте энергии и веществ при участии всех живых организмов планеты. Идея биосферного круговорота была обоснована немецким физиологом Я. Молешоттом . А предложенное в 80-е гг. XIX в. подразделение организмов по способам питания на три группы (автотрофные, гетеротрофные и миксотрофные) немецким физиологом В. Пфеффером было крупным научным обобщением, способствующим пониманию основных процессов обмена веществ в биосфере.

Начало учения о биосфере связывают с именем знаменитого французского натуралиста Ж.Б. Ламарка. Определение же биосферы впервые было введено австрийским геологом Э. Зюссом в 1875 г. Значительно более широкое представление о биосфере мы встречаем у В.И. Вернадского.

Биосфера и человек. На начальных этапах существования человеческого общества интенсивность воздействия на среду обитания не отличалась от воздействия других организмов. Получая от окружающей среды средства к существованию в таком количестве, которое полностью восстанавливалось за счет естественных процессов биотического круговорота, люди возвращали в биосферу то, что использовали другие организмы для своей жизнедеятельности. Универсальная способность микроорганизмов разрушать органическое вещество, а растений – превращать минеральные вещества в органические обеспечивала включение продуктов хозяйственной деятельности людей в биотический круговорот.

Первая созданная человеком культура – палеолит (каменный век) – продолжалась примерно 12–30 тыс. лет. Она совпала с длительным периодом оледенения. Экономической основой жизни человеческого общества в это время была охота на крупных животных: северного оленя, шерстистого носорога, лошадей, мамонта, тура. На стоянках дикого человека находят многочисленные кости диких животных – свидетельство успешной охоты. Интенсивное истребление крупных травоядных животных привело к сравнительно быстрому сокращению их численности и исчезновению многих видов. Если мелкие травоядные могли восполнить потери от преследования охотниками высокой рождаемостью, то крупные животные в силу особенностей их биологии были лишены этой возможности. Дополнительные трудности для них создали изменившиеся в конце палеолита климатические условия. 10–12 тыс. лет назад наступило резкое потепление, отступил ледник, распространились леса в Европе. Это создало новые условия жизни, разрушило сложившуюся экономическую базу человеческого общества. Закончился период его развития, характеризовавшийся чисто потребительским отношением к окружающей среде.

В следующую эпоху – эпоху неолита (новый каменный век) – наряду с охотой, рыбной ловлей и собирательством все большее значение приобретает процесс производства пищи. Делаются первые попытки одомашнивания животных и разведения растений. На местах археологических раскопок поселений, существовавших 9–10 тыс. лет назад, обнаруживают пшеницу, ячмень, чечевицу, кости домашних животных – коз, свиней, овец. Развиваются зачатки земледельческого и скотоводческого хозяйства. Широко используется огонь для уничтожения растительности в условиях подсечного земледелия и как средство охоты. Начинается освоение минеральных ресурсов, зарождается металлургия.

Рост населения, интенсивное развитие науки и техники в последние два столетия, и особенно в наши дни, привели к тому, что деятельность человека стала фактором планетарного масштаба, направляющей силой дальнейшей эволюции биосферы. Возникли антропоценозы (от греч. anthropos – человек, koinos – общий, общность) – сообщества организмов, в которых человек является доминирующим видом, а его деятельность – определяющей состояние всей системы. В настоящее время человек извлекает из биосферы сырье в значительном и все возрастающем количестве, а современные промышленность и сельское хозяйство производят или применяют вещества, не только не используемые другими видами организмов, но нередко ядовитые и чуждые природе. В результате биотический круговорот становится незамкнутым. Вода, атмосфера, почвы загрязняются отходами производства, вырубаются леса, истребляются дикие животные, разрушаются природные биогеоценозы.

Нежелательные последствия неконтролируемой человеческой деятельности осознавали естествоиспытатели уже в конце XVIII – начале XIX в. (Ж.-Л.-Л. Бюффон, Ж.-Б. Ламарк).

По своим последствиям воздействия человеческого общества на среду обитания могут быть положительными и отрицательными. Последние особо привлекают к себе внимание. Основные пути воздействия людей на природу заключаются в расходовании естественных богатств в виде минерального сырья, почв, водных ресурсов; загрязнении среды, истреблении видов, разрушении биогеоценозов.

Положительное влияние человека выражается в выведении новых пород домашних животных и сортов сельскохозяйственных растений, создании культурных биогеоценозов, а также в разработке новых штаммов полезных микроорганизмов как основы микробиологической промышленности, развитии прудового рыбного хозяйства, продукции полезных видов в новых условиях обитания.

Прогнозы будущего человечества с учетом экологических проблем, стоящих перед ним, представляют непосредственный интерес для всего населения планеты. По мнению экспертов, экологическая ситуация, складывающаяся на Земле, таит в себе опасность серьезных и, возможно, необратимых нарушений биосферы в том случае, если деятельность человечества не приобретет планомерный, согласующийся с законами существования и развития биосферы характер. Вместе с тем расчеты показывают, что человеческое общество не использует значительные резервы биосферы.

Одной из наиболее острых проблем современности является проблема быстрого роста населения Земли. Ежегодный прирост населения в абсолютном исчислении достигает 60–70 млн. человек, или примерно 2%. К 2000 г. численность населения достигла 6 млрд. человек. Площадь поверхности суши на планете равна 1,5 10 14 м 2 , что достаточно для размещения 15–20 млрд. человек со средней плотностью 300–400 человек на 1 км 2 , имеющей место в настоящее время в Бельгии, Нидерландах, Японии.

Растущее население Земли должно быть обеспечено пищей. Известно, что производство продовольствия на душу населения растет медленнее, чем производство энергии, одежды, различных материалов. Многие миллионы людей в слаборазвитых странах испытывают; нехватку продуктов. Вместе с тем из всей территории суши, пригодной для земледелия, в среднем по земному шару сельскохозяйственными угодьями занято лишь 41%. При этом на используемой территории, по мнению разных экспертов, получают от 3 – 4 до 30% возможного при современном уровне развития агротехники количества продуктов. Причины этого отчасти заключаются в недостаточной энерговооруженности сельского хозяйства. Так, в Японии при выращивании урожая, в пять раз большего, чем в Индии (с 1 га сельскохозяйственных угодий), затрачивают в 20 раз больше электроэнергии и в 20 – 30 раз – удобрений и пестицидов.

Уже сейчас 30% металлоизделий изготовляют из вторичного сырья. При существующей технологии из месторождений нефти извлекается лишь 30–50% запасов. Выход полезных ископаемых, таким образом, может быть увеличен путем разработки прогрессивных способов добычи. Около 95% энергии в настоящее время получают за счет сжигания ископаемого топлива, 3–4% – за счет энергии речного стока и только 1 – 2% – за счет атомного горючего. Использование атомной энергии в мирных целях решает проблему энергетического кризиса.

Преобразующая деятельность людей неизбежна, так как с ней связано благосостояние населения. Современное человечество располагает исключительно мощными факторами воздействия на природу планеты. Следование принципу научно обоснованного рационального природопользования позволяет получить в целом позитивный итог.

Превращение биосферы в ноосферу. Понятие «ноосфера» было введено и науку французским философом Э. Леруа в 1927 г.

Ноосферой Леруа назвал оболочку Земли, включающую человеческое общество с его языком, индустрией, культурой и прочими атрибутами разумной деятельности.

Ноосфера, по мнению Э. Леруа, представляет собой «мыслящий пласт», который, зародившись в конце третичного периода, разворачивается с тех пор над миром растений и животных, вне биосферы и над ней.

Значительно более широкое представление о биосфере и ноосфере дал один из выдающихся ученых, основатель геохимии, биохимии, радиогеологии В.В. Вернадский. Он исходил из того, что естественно-научные гипотезы должны отражать объективную реальность материального мира – закономерности, связанные с физико-химическими, геологическими, биохимическими и другими процессами в едином комплексе.

В противоположность трактовке ноосферы, выдвинутой Э. Леруа, Вернадский представлял ноосферу не как нечто внешнее по отношению к биосфере, а как новый этап в развитии биосферы, заключающийся в разумном регулировании отношений человека и природы.

В. Вернадский сформулировал ряд конкретных условий, необходимых для становления и существования ноосферы. Перечислим эти условия и посмотрим, в какой мере эти условия выполнены или выполняются.

1.Заселение человеком всей планеты. Это условие выполнено. На Земле не осталось места, где бы не ступала нога человека. Он обосновался даже в Антарктиде.

2.Резкое преобразование средств связи и обмена между странами . Это условие также можно считать выполненным. С помощью радио и телевизора мы моментально узнаем о событиях в любой точке земного шара.

Средства коммуникации постоянно совершенствуются, ускоряются, появляются такие возможности, о которых недавно трудно было мечтать. И здесь нельзя не вспомнить пророческих слов Вернадского:

Этот процесс - полного заселения биосферы человеком - обусловлен ходом истории научной мысли, неразрывно связан со скоростью сношений, с успехами техники передвижения, с возможностью мгновенной передачи мысли, ее одновременного обсуждения на всей планете.

До недавнего времени средства телекоммуникации ограничивались телеграфом, телефоном, радио и телевидением. Имелась возможность передавать данные от одного компьютера к другому при помощи модема, подключенного к телефонной линии. В последние годы развитие глобальной телекоммуникационной компьютерной сети Интернет дало начало настоящей революции в человеческой цивилизации, которая входит в эру информационных технологий. Рост развитие сети, совершенствование вычислительной и коммуникационной техники идут сейчас в геометрической прогрессии подобно размножению и эволюции живых организмов. На это в свое время обратил внимание Вернадский:

Со скоростью, сравнимой со скоростью размножения, выражаемой геометрической прогрессией в ходе времени, создается этим путем в биосфере все растущее множество новых для нее косных природных тел и новых больших природных явлений, ход научной мысли, например, в создании машин, как давно замечено, совершенно аналогичен ходу размножения организмов.

Если раньше сетью Интернет пользовались только исследователи в области информатики, государственные служащие, то теперь практически любой желающий может получить доступ к ней. И здесь мы видим воплощение мечты Вернадского о благоприятной среде для развития научной работы, популяризации научного знания, об интернациональности науки.

Всякий научный факт, всякое научное наблюдение,– писал Вернадский, –где бы и кем бы они ни были сделаны, поступают в единый научный аппарат, в нем классифицируются и приводятся к единой форме, сразу становятся общим достоянием для критики, размышлений и научной работы.

Если раньше для того, чтобы вышла в свет научная работа, a научная мысль стала известной миру, требовались годы, то сейчас любой ученый, имеющий доступ к сети Интернет, может представить свой труд ученому миру.

3. Усиление связей, в том числе политических, между всеми странами Земли. Это условие можно считать если не выполненным, то выполняющимся. Возникшая после Второй мировой войны Организация Объединенных Наций (ООН) оказалась достаточно устойчивой и действенной.

4. Начало преобладания геологической роли человека над другими геологическими процессами, протекающими в биосфере. Это условие также можно считать выполненным, хотя именно преобладание геологической роли человека в ряде случаев привело к тяжелым экологическим последствиям. Объем горных пород, извлекаемых из глубин Земли всеми шахтами и карьерами мира, сейчас почти в два раза превышает средний объем лав и пеплов, выносимых ежегодно всеми вулканами Земли.

5. Расширение границ биосферы и выход в космос. В работах последнего десятилетия жизни Вернадский не считал границы биосферы постоянными. Он подчеркивал расширение их в прошлом как итог выхода живого вещества на сушу, появления высокоствольной растительности, летающих насекомых, а позднее – летающих ящеров и птиц. В процессе перехода к ноосфере границы биосферы, согласно учению Вернадского, должны расширяться, а человек должен выйти в космос. Эти предсказания сбылись.

6.Открытие новых источников энергии. Условие в принципе выполнено, но иногда с трагическими последствиями. Речь идет об атомной энергии, которая давно освоена и в мирных, и, к сожалению, в военных целях. Человечество (а точнее, политики) пока явно не готово ограничиться мирными целями, более того, атомная (ядерная) сила вошла в наш век, прежде всего как военное средство и средство устрашения противостоящих ядерных держав. Вопрос об использовании атомной энергии глубоко волновал Вернадского еще более полувека назад. В предисловии к книге «Очерки и речи» он пророчески писал:

Недалеко время, когда человек получит в свои руки атомную энергию, такой источник силы, который даст ему возможность строить свою жизнь, как он захочет. Сумеет ли человек воспользоваться этой силой, направить ее на добро, а не на самоуничтожение?

Для развития международного сотрудничества в области мирного использования атомной энергии в 1957 г. создано Международное агентство по атомной энергии (МАГАТЭ), объединившее большую часть государств – членов ООН.

7. Равенство людей всех рас и религий. Это условие если не достигнуто, то, во всяком случае, достигается. Решительным шагом для установления равенства людей различных рас и вероисповеданий стало в прошлом веке разрушение колониальных империй.

8.Увеличение роли народных масс в решении вопросов внешней и внутренней политики. Это условие соблюдается во многих странах с парламентской формой правления.

9.Свобода научной мысли и научного искания от давления религиозных, философских и политических построений и создание в государственном строе условий, благоприятных для свободной научной мысли. Сейчас трудно говорить о выполнении этого условия в разных странах. Для поддержания российской науки созданы международные фонды. В развитых и даже развивающихся странах, например в Индии, государственный и общественный строй создает режим максимального благоприятствования для свободной научной мысли.

10. Продуманная система народного образования, и подъем благосостояния трудящихся. Создание реальной возможности не допустить недоедания и голода, нищеты и ослабить болезни. О выполнении этого условия пока судить преждевременно. Однако Вернадский предупреждал, что процесс перехода биосферы в ноосферу не может происходить постепенно и однонаправленно, что на этом пути временные отступления неизбежны.

11.Разумное преобразование первичной природы Земли с целью сделать ее способной удовлетворить все материальные, эстетические и духовные потребности численно возрастающего населения. Это условие пока также не может считаться выполненным, однако первые шаги в направлении разумного преобразования природы во второй половине прошлого века, несомненно, начали осуществляться. Вся система научного знания дает фундамент для решения экологических задач.

12.Исключение войн из жизни общества. Это условие Вернадский считал чрезвычайно важным для создания и существования ноосферы. Но оно пока не выполнено. В целом мировое сообщество стремится не допустить мировой войны, хотя локальные войны непрерывно возникают.

Таким образом, мы видим, что большая часть условий перехода биосферы в ноосферу выполняется , а те, для которых такие условия еще не созрели, в принципе могут быть выполнены объединенными усилиями всего человечества. Однако ясно, что процесс перехода к ноосфере будет постепенным. Это неоднократно подчеркивал и сам Вернадский, утверждая, что человеческая цивилизация лишь вступает в переходный период от биосферы к ноосфере.

На современном этапе говорить о разумной планетарной деятельности человечества еще рано. Ноосфера – это определенный образ или идеал будущего планетарного развития. Идеи Вернадского намного опережали то время, в котором он творил. В полной мере это относится к учению о биосфере и ее переходе в ноосферу. Только сейчас, в условиях необычайного обострения глобальных проблем современности, становятся ясны пророческие слова Вернадского о необходимости мыслить и действовать в планетарном – биосферном – аспекте. Только сейчас рушатся иллюзии технократизма, покорения природы и выясняется сущностное единство биосферы и человечества. Судьба нашей планеты и судьба человечества – это единая судьба.

Устремленность в будущее – характерная черта ноосферного учения, которое в современных условиях необходимо развивать во всех направлениях.


Похожая информация.


1. Введение.

2. Живое вещество-компонент биосферы.

3. Абиотические (неживые) компоненты биосферы.

4. Почва- уникальный компонент биосферы.

5. Биосфера и космос.

6. Экологические взаимодействия живого вещества: кто как питается.

7. Биогенная миграция атомов- экосистемное свойство биосферы.

8. Как развивалась биосфера: пять экологических катастроф.

9. Устойчивость биосферы.

10. Биосфера и человек: экологическая опасность.

11. Человек должен сохранить разнообразие биосферы.

12. Заключение.

1. Введение

Сегодня во весь рост поднимается перед людьми одна из сложнейших проблем, независимо от того, живут ли они в Африке или в Европе, в больших городах или в джунглях. Она касается каждого из нас, и избежать её никому не дано. Это- проблема сохранения жизни на планете, выживания человека, как одного из уникальных видов живых существ.

Решение этой проблемы зависит от того, насколько каждый из нас и все человечество вместе осознают «запретную черту», переступить через которую человечество не должно ни при каких обстоятельствах. Такой «запретной чертой» являются законы жизни на планете.

Человек- обитатель биосферы. Именно биосфера- та оболочка Земли, в пределах которой протекает жизнь человечества в целом и каждого из нас.

Термин « биосфера» ввел австралийский геолог Эдуард Зюсс (1881-1914). Современная концепция биосферы связана с именем академика В.И. Вернадского.

Биосфера- область обитания живых организмов; оболочка Земли, состав, структура и энергетика которой определяется совокупной деятельностью живых организмов. Верхняя граница простирается до высоты озонового экрана (20-25 км), нижняя опускается на 1-2км ниже дна океана и в среднем 2-3 км на суше. Биосфера охватывает нижнюю часть атмосферы, гидросферу, педосферу (почву), и верхнюю часть литосферы (горные породы).

2. Живое вещество- компонент биосферы

Биосфера включает в себя все части планеты, освоенные жизнью. Это и атмосфера, и океан, и все части земной поверхности, где утвердилась жизнь в любых её формах. Главный компонент биосферы- это её живое вещество.

«…На земной поверхности нет химической силы более постоянно действующей, а потому и более могущественной по своим конечным последствиям, чем живые организмы, взятые в целом» (В.И. Вернадский).

В какой форме представлено живое вещество в биосфере? Живое вещество в биосфере представлено в виде отдельных тел- индивидуальных организмов.

Живое вещество представлено организмами различных размеров. Самые крупные из них- киты. Длина тела современных китов от 1,1 до 33 м, масса от 30 кг до 150 т. К высочайшим деревьям относится секвойя вечнозеленая, которая достигает высоты 110-112 м и имеет диаметр 6-10 м.

По приблизительной оценке, за время существования жизни на Земле в биосфере существовало более миллиарда видов..

Среди живых существ преобладают насекомые (их около миллиона видов). Позвоночные составляют всего 2%. . Известный нам мир жизни более чем на 70% состоит из животных, 225 - это растения и грибы, 5%- одноклеточные организмы.

Живое вещество распределено в биосфере неравномерно, оно образует сгущения на границах раздела литосфера- гидросфера - атмосфера: в водоемах близ поверхности, на дне морей и океанов, на поверхности суши. На материках наблюдаются береговые, пойменные, озерные, тропические, субтропические сгущения жизни. На суше преобладают растения, а в океане - животные.

Масса живого вещества называется биомассой. Она выражается в единицах массы сухого или сырого вещества, отнесенной к единицам площади или объема места обитания.Известно, что продолжительность жизни каждого отдельного организма имеет пределы, он смертен. Как же поддерживается непрерывность жизни в биосфере? Непрерывно размножаясь, живые организмы образуют поток чередующихся поколений: на смену погибающим появляются новые существа. Тем самым современное живое существо по происхождению связано с живым веществом прошлых геологических эпох.

Мириады живых существ населяют биосферу, составляют живое вещество биосферы. Химический состав живого вещества сходен с составом звезд и Солнца, что подтверждает единство природы. У живого вещества современными методами могут быть измерены масса, количество заключенной в нем энергии, характер отвечающего его пространства. Современному живому веществу присуще большое химическое разнообразие.

3. Абиотические (неживые) компоненты биосферы

Вода, воздух, почвы, их химический состав, физические свойства, в первую очередь температура, космическое излучение, гравитация, магнетизм- таковы абиотические компоненты биосферы.

К биосфере относят прежде всего те участки планеты, где есть условия не только для выживания, но и для размножения живых существ- это поле существования жизни. К нему прилегают территории, в которых живые существа страдают и лишь выживают, но не могут размножаться- поле устойчивости жизни.

Земные абиотические условия, которые определяют поле существования жизни:

- достаточное количество кислорода и углекислого газа,

- достаточное количество жидкой воды, а не льда или пара,

- благоприятные температуры: не слишком высокие, чтобы не свертывался белок, и не слишком низкие, чтобы нормально работали ферменты- ускорители биохимических реакций,

- живому существу необходим прожиточный минимум минеральных веществ.

Биосфера- глобальная экосистема, особая оболочка Земли, сфера распространения жизни, границы которой определяются наличием пригодных для организмов абиотических условий: температуры, жидкой воды, состава газов, элементов минерального питания.

4. Почва- уникальный компонент биосферы

В конце Х1Х в. великий русский естествоиспытатель В. В. Докучаев своими исследованиями чернозема и других почв Русской долины и Кавказа установил, что почвы представляют собой природные тела и по своим внешним особенностям и свойствам сильно отличаются от горных пород, на которых они образовались. Их распределение на поверхности Земли подчинено строгим географическим закономерностям.

Разнообразие почв огромно. Это связано с многообразием сочетания факторов почвообразования: горных пород, возраста поверхности, растительного и животного населения, рельефа.

Почва-это особое природное тело и среда жизни, возникающая в результате преобразования горных пород поверхности суши совместной деятельностью живых организмов, воды и воздуха.

Почвообразовательные процессы на Земле -это грандиозные по своим планетарным масштабам и продолжительности процессы создания органического вещества почв, их биологического накопления и возникновения плодородия.

5. Биосфера и космос

Земля - уникальная планета, она находится на единственно возможном расстоянии от Солнца, которое определяет такую температуру поверхности Земли, при которой вода может находиться в жидком состоянии.

Земля получает от солнца огромное количество энергии и сохраняет при этом примерно постоянную температуру. Значит наша планета излучает в космос почти такое же количество энергии, какое получает из космос: приход и расход должны быть сбалансированы, иначе система однажды потеряет устойчивость. Земля либо нагреется, либо замерзнет и превратится в безжизненное тело.

Биосфера тесно связана с космосом. Потоки энергии, поступающие к Земле, создают условия, обеспечивающие жизнь. Магнитное поле и озоновый экран защищают планету от излишних космических излучений и интенсивной солнечной радиации. Космические излучения, достигающие биосферы, обеспечивают фотосинтез и влияют на активность живых существ.

6. Экологические взаимодействия живого вещества: кто как питается

Планета Земля отличается от других планет тем, что её биосфера содержит вещество, чувствительное к потоку солнечного излучения- хлорофилл. Именно хлорофилл обеспечивает преобразование электромагнитной энергии солнечного излучения в химическую энергию, с помощью которой идет процесс восстановления окислов углерода и азота в реакциях биосинтеза.

В зеленом растении происходит фотосинтез - процесс образования углеводов из воды и двуокиси кислорода (которая находится в воздухе или воде). При этом в качестве побочного продукта выделяется кислород. Зеленые растения относят к автотрофам- организмам, которые берут все нужные им для жизни химические элементы из окружающей их косной материи и не требуют для построения своего тела готовых органических соединений другого организма. Основной используемый автотрофами источник энергии-Солнце. Гетеротрофы-это организмы, которые нуждаются для своего питания в органическом веществе, образованном другими организмами. Гетеротрофы постепенно преобразуют органическое вещество, образованное автотрофами, доводя его до первоначального- минерального- состояния.

Деструктивная (разрушающая) функция совершается представителями каждого из царств живого вещества. Распад, разложение - неотъемлемое свойство обмена веществ каждого живого организма. Растения образуют органические вещества и являются крупнейшими производителями углеводов на Земле; но они же выделяют и необходимый для жизни кислород как побочный продукт фотосинтеза.

В процессе дыхания в телах всех видов живого образуется углекислый газ, который растения вновь используют для фотосинтеза. Существуют и такие виды живого, для которых разрушение отмершего органического вещества являются способом питания. Существуют организмы со смешанным типом питания, их называют миксотрофами.

В биосфере происходят процессы преобразования неорганического, косного вещества в органическое и обратной перестройки органических веществ в минеральные. Движение и преобразование веществ в биосфере осуществляется при непосредственном участии живого вещества, все виды которого специализировались на различных способах питания.

7. Биогенная миграция атомов- экосистемное свойство биосферы

Конечное количество вещества, которое есть в биосфере, приобрело свойство бесконечности через круговорот веществ.

Образ круговорота вещества в биосфере создает колесо водяной мельницы. Однако, чтобы колесо вертелось, нужен постоянный приток воды. Подобно этому, поток солнечной энергии, поступающей из космоса, крутит « колесо жизни» на нашей планете. Насколько быстро вертится колесо? В ходе биогеохимических циклов атомы большинства химических элементов проходили бесчисленное количество раз через живое существо. Например, весь кислород атмосферы «оборачивается» через живое вещество за 2000 лет, углекислый газ- за 200-300лет, а вся вода биосферы- за 2 млн лет.

Живое вещество является совершенным приемником солнечной энергии.

Энергия, поглощенная и использованная в реакции фотосинтеза, а затем запасенная в виде химической энергии углеводов, очень велика, есть сведения что она сопоставима с энергией, которую потребляют 100 тысяч больших городов в течение 100 лет. Гетеротрофы используют органическое вещество растений, как пищу: органика окисляется кислородом, который доставляют в организм органы дыхания, с образованием углекислого газа- реакция идет в обратном направлении. Таким образом, «вечной» делает жизнь одновременное существование автотрофов и гетеротрофов.

Факты и рассуждения о «колесе жизни» в биосфере дают право говорить о законе биогенной миграции атомов, который сформулировал В.И. Вернадский: миграция химических элементов на земной поверхности и в биосфере в целом осуществляется или при непосредственном участии живого вещества или же она протекает в среде, геохимические особенности которой обусловлены живым веществом, как тем, которое сейчас населяет биосферу, так и тем, которое действовало на Земле в течение всей геологической истории.

В системе современного научного мировоззрения понятие биосферы занимает ключевое место во многих науках. Разра­ботка учения о биосфере неразрывно связана с именем В. И. Вернадского, хотя и имеет довольно длинную предысторию, начавшуюся с книги Ж.-Б. Ламарка «Гидрогеология» (1802), в которой содержится одно из первых обоснований идеи о влия­нии живых организмов на геологические процессы. Затем был грандиозный многотомный труд А. Гумбольдта «Космос» (первая книга вышла в 1845 году), в котором было собрано множество фактов, подтверждающих тезис о взаимодействии живых организмов с теми земными оболочками, в которые они проникают. Термин «биосфера» был впервые введен в науку немецким геологом и палеонтологом Э. Зюссом, подразумевавшим под ней самостоятельную, пересекающуюся с другими сферу, в которой на Земле существует жизнь. Он дал определение биосферы как совокупности организмов, ограниченной в пространстве и времени и обитающей на поверхности Земли.

Впервые идею о геологических функциях живого вещества, представление о совокупности всего органического мира в виде единого нераздельного целого высказал В. И. Вернадский. Его концепция складывалась постепенно, от первой студенческой работы «Об изменении почвы степей грызунами» (1884) к «Живому веществу» (рукопись рубежа 20-х годов), «Биосфере» (1926), «Биогеохимическим очеркам» (1940), а также «Химическому строению биосферы Земли» и «Философским мыслям натуралиста», над которыми он работал в последние десятилетия своей жизни.

Введя понятие живого вещества как совокупности всех живых организмов планеты, в том числе и человека, Вернадский тем самым вышел на качественно новый уровень понимания жизни - биосферный. Это дало возможность понимать жизнь как могучую геологическую силу нашей планеты, формирующую облик Земли. Введение этого понятия также позволяло поставить и решить вопрос о механизмах геологической активности живого вещества, источниках энергии для этого.

Геологическая роль живого вещества основана на его геохимических функциях, которые современная наука классифи­цирует по пяти категориям:

1...энергетическая,

2...концентрацион­ная,

3...деструктивная,

4...средообразующая,

5...транспортная.

Они основаны на том, что живые организмы своим дыханием, своим питанием, своим метаболизмом, непрерывной сменой поколений порождают грандиозное планетное явление - миграцию химических элементов в биосфере. Это предопределило решающую роль живого вещества и биосферы в становлении современного облика Земли ее атмосферы, гидросферы, литосферы.

Биосфера - это живое вещество планеты и преобразованное им косное вещество (образованное без участия жизни). Это фундаментальное понятие биогеохимии, один из основных структурных компонентов организованности нашей планеты и околоземного космического пространства, сфера, в которой осуществляются биоэнергетические процессы и обмен веществ вследствие деятельности жизни.


Сегодня принято считать границы биосферы следующими: в атмосфере микробная жизнь имеет место примерно до высоты 20 - 22 км над земной поверхно­стью, а наличие жизни в глубоких океанических впадинах - до 8 - 11 км ниже уровня моря. Углубление жизни в земную кору много меньше, и микроорганизмы обнаружены при глубинном бурении и в пластовых водах не глубже 2-3 км. Но эта тончайшая пленка покрывает абсо­лютно всю Землю, не оставляя ни одного места на нашей пла­нете (включая пустыни и ледяные пространства Арктики и Антарктики), где бы не было жизни. Количество живого вещества в разных областях биосферы различно. Са­мое большое его содержание в верхних слоях литосферы (почва), гидросферы и нижних слоях атмосферы. По мере углубления в земную кору, океан, выше в атмосферу - количество живого вещества уменьшается, но нет резкой грани­цы между биосферой и окружающими ее земными оболочками.

Биосфера открыта космосу, получая из него потоки космической энергии. Используя ее, живое вещество преобразует нашу планету. Само образование биосферы, в том числе и происхождение жизни на Земле, является результатом действия этих космиче­ских сил, важнейшего фактора функционирования биосферы.

Космические излучения и прежде всего энергия Солнца оказывают постоянное действие на все явления на Земле. Ос­нователь гелиобиологии А. Л. Чижевский особенно много за­нимался изучением солнечно-земных связей. Он отмечал, что самые разнообразные процессы и явления на Земле протекают под непосредственным воздействием Солнца. Солнце является основным (наряду с космическим излучением и энергией радиоактивного распада в недрах Земли) источни­ком энергии, причиной всего на Земле от атмосферных явлений, роста растений до умственной деятельности человека.

Связь между циклами солнечной активности и процессами в биосфере была замечена еще в XVIII веке. Тогда английский астроном В. Гершель обратил внимание на связь между уро­жаями пшеницы и числом солнечных пятен. В конце XIX века профессор Одесского университета Ф. Н. Шведов, изучая срез ствола столетней акации, обнаружил, что толщина годичных колец изменяется каждые 11 лет, как бы повторяя цикличность солнечной активности.

Обобщив опыт предшественников, А. Л. Чижевский подвел под эти эмпирические данные научную базу. По его мнению, Солнце определяет ритм большинства биологических процессов на Земле. Когда на нем образуется много пятен, по­являются хромосферные вспышки и усиливается яркость коро­ны, на нашей планете развиваются эпидемии, усиливается рост деревьев, особенно сильно размножаются вредители сельско­го хозяйства и микроорганизмы.

Вся живая природа чутко реагирует на сезонные изменения окружающей температуры, интенсивность солнечного излуче­ния - весной покрываются листвой деревья, осенью листва опадает, затухают обменные процессы, многие животные впа­дают в спячку и т. д. Человек не является исключением. На протяжении года у него меняется интенсивность обмена, со­став клеток, тканей.

Состояние солнечной активности влияет на распространение многих заболеваний. Так, в 1957 году, несмотря на проводившуюся, как и в прошлые годы, ваци­нацию населения, неожиданно возросло число заболеваний клещевым энцефалитом и туляремией. В 30-е годы нашего века Чижевский предсказал, что в 1960 - 1962 годах произойдет эпидемическая вспышка холеры, что действительно произош­ло в странах Юго-Восточной Азии. Все жизненные циклы: заболевания, массовые перекочевки, периоды бурного размножения млекопитающих, насекомых, виру­сов - протекают синхронно с 11-летними циклами солнечной активности.

Люди также подвержены действию космических энергий и солнечной радиации. Так, человеческий организм, так же как организмы других животных, подстраивается под ритмы биогеосферы, прежде всего суточные (циркадные) и сезонные, связанные со сменой времен года.

Обмен веществ у человека протекает в наследуемом из поколения в поколение циркадном ритме. В настоящее время считается, что около сорока процессов в человеческом организме подчинено строгому циркадному ритму. Например, еще в 1931 году была установлена цикличность в функционировании печени человека, содержании гемоглобина, калия, натрия, кальция в крови. По суточному графику работает и вегетативная нервная система. Статистика утверждает, что даже рождение и смерть чаще случаются в темную часть суток, около полуночи.

Гематологи пришли к выводу, что в годы максимума сол­нечной активности норма свертывания крови у здоровых лю­дей увеличивается вдвое, поэтому при увеличении сол­нечных пятен учащаются инфаркты, инсульты.

Чижевский попы­тался установить взаимосвязь одиннадцатилетних солнечных циклов с насыщенностью историческими событиями разных периодов человеческой истории. В результате своего анализа он сделал вывод, что максимум общественной активности сов­падает с максимумом солнечной активности. Средние точки течения цикла дают максимум массовой деятельности челове­чества, выражающийся в революциях, восстаниях, войнах, по­ходах, переселениях, являются началами новых исторических эпох в истории человечества. В крайних точках течения цикла напряжение общечеловеческой деятельности военного или по­литического характера понижается до минимального преде­ла, уступая место созидательной деятельности и сопровожда­ясь всеобщим упадком политического и военного энтузиазма, миром и спокойной творческой работой в области государст­венного строительства, науки и искусства.

Социальные конфлик­ты (войны, бунты, революции), по убеждению Чижевского, во многом предопределяются поведением и активностью Солнца. По подсчетам ученого, во время минимальной солнечной активности происходит минимум массовых активных социаль­ных проявлений в обществе (примерно 5%). Во время же пика активности Солнца их число достигает 60%. Выводы Чи­жевского подтверждают неразрывное единство человека и космоса, указывают на их тесное взаимовлияние.

Эти идеи о связи космоса, человека и биосферы, представ­ленные концепциями Вернадского и Чижевского, легли в осно­ву популярной сегодня гипотезы Л.Н. Гумилева о пассионарном толчке, рождающем к жизни новые этносы. Ключевым понятием концепции этногенеза Гумилева является понятие пассионарности, которое он определяет как повышенное стремление к действию. Появление этого признака у отдельно­го человека является мутацией, затрагивающей энергетические механизмы человеческого тела. Пассионарий (носитель пас­сионарности) становится способным воспринять из окружаю­щей среды больше энергии, чем необходимо для его нормаль­ной жизнедеятельности. Избыток же полученной энергии на­правляется им в любую область человеческой деятельности, выбор которой определяется конкретными историческими ус­ловиями и склонностями самого человека. Пассионарий может стать великим завоевателем (например, Александр Македонский, Напо­леон) или путешественником (Марко Поло, А. Прже­вальский), великим ученым (А. Эйнштейн, И. Гете) или религиозным деятелем (Будда, Христос). Появление свой­ства пассионарности инициируется каким-то специфическим редким космическим излучением (пассионарные толчки проис­ходят 2-3 раза за тысячелетие). Носители пассионарности появляются в зоне следа от этого излучения - полосы шириной 200 - 300 км, но длиной до половины окружности планеты. Ес­ли в зоне этого излучения окажутся несколько народов, живущих в разных ландшафтах, они могут стать зародышем нового этноса. Смена этносов и есть процесс всемирной истории, при­чина прогрессивных перемен в ней.

Постепенно представления о связи биосферы и космоса, человека и космоса, общества и космоса вошли в научный оборот, став важной частью современного научного миро­воззрения, характерной чертой современной культуры. Эти взгляды принято называть космизмом, а сам процесс формирования такого мировоззрения - космизацией науки и философии. Основными признаками космического мировоззрения являются:

·...внедрение в массовое сознание идей о связи Земли и Космоса;

·...переход от антропоцентризма к биосфероцентризму, ставящему интересы человека и человечества в зависимость от потребностей всей планеты и всего живого на ней.

Частью нового космического мировоззрения является рас­ширение предмета многих старых классических наук, выведение их за рамки изучения чисто земных явлений и процессов, появле­ние космического аспекта в научных исследованиях (астрохимия, экобиология, радиационная генетика и т. д.). В связи с выходом человека в космос, как ответ на теоретические и практические проблемы этого шага появилась космонавтика. Вместе с этим люди все больше и больше ставят себе на службу природные силы космического порядка (например, использование ядер­ной энергии).

Новое мировоззрение требует введения новой системы ценностей, нового решения «вечных» человеческих вопросов о смысле жизни, смерти и бессмертии, добре и зле, которые должны быть ориентированы на осознание человеком косми­ческой значимости его деятельности.

Особенно активно формирование нового мировоззрения идет в последние десятилетия, хотя первые идеи космизма воз­никли на заре человеческой истории. Его мож­но определить как своеобразную направленность мышления, умонастроение, в атмосфере которого формировались новые подходы к выработке целостной концепции мироздания, пред­ставления об органическом единстве всего мира и его тесней­шей связи со Вселенной, с космосом. Понимаемый таким образом космизм был изначально присущ культурному самосозна­нию человечества - мифологическое сознание наших предков полностью основывалось на парадигме космизма. Об этом свидетельствуют их интуитивные представления о тесной связи мира и человека, оживотворение мира, а также попытки обнаружить за грозными природными стихиями некие всеобщие законы, гармонизирующие эти отношения, что отразилось в космологических мифах разных народов. Затем была платоновская картина мира на основе признания первичности мира идей, присущих материальному бытию. Периодически космизм также оживал в христианизированном платонизме, в натурфилософских разработках Возрождения.

Серьезный кризис космизм пережил в Новое время в связи с развитием науки, схематизировавшей реальность и предавшей забвению идеи целостного знания. И, хотя в естествознании Нового времени периодически возрождались идеи единства мира, человека и космоса (Д. Бруно, Г. Галилей, Н. Коперник и др.), они не могли переломить господствующих тенденций развития европейской науки, ее стремления к строгому рационализму и аналитизму.

Лишь во второй половине XIX века европейская наука и философия проявили тенденции к синтезу знания, хотя и воспринимаемые европейской культурой с большим трудом.

Совершенно в иной ситуации была Россия во второй поло­вине XIX века. Наша страна была несколько изолирована от идей, господствовавших в Европе. Русская наука, родившаяся в XVIII в., и русская философия, существующая с XI века основывались на глубинных архетипах русского сознания, среди которых был и космизм. Это связано с тем, что в России языческое целостное мироощущение не было уничто­жено христианством. Более того, русское православие также представляло космос как живой организм, находящийся в непрестанном взаимодействии с Творцом.

Эти идеи, подспудно хранившиеся в русском сознании, со­единились с осознанием кризиса научного мировоззрения в конце XIX - начале XX века и дали миру феномен русского космизма - характерной черты русской культуры второй половины XIX века - первой половины XX века. В Рос­сии он стал целым пластом культуры, представленным в твор­честве замечательной плеяды ученых, философов и художников. Идеи космизма в России нашли свое выражение в творчестве В. В. Докучаева, В. И. Вернадского, К. Э. Циолковского, А. Л. Чижевского, Л. Н. Гумилева, Н. Г. Холодного, С. П. Королева, Н. А. Морозова, Н. Ф. Федорова, В. С. Соловьева, А. Белого, А. В. Сухово-Кобылина и др.

Особый интерес сегодня вызывают идеи Н. Ф. Федорова, который одним из первых создал свою концепцию космизма. Он считал, что рост народонаселения на Земле приведет к освоению других планет, на которых будут расселены люди. В связи с этим он предлагал свой вариант перемещения людей в космическом пространстве. Для этого, по его мнению, нужно будет овладеть электромагнитной энергией земного шара, что позволит регулировать его движение в мировом пространстве и превратит Землю в подобие космического корабля. В перспективе человек, по предположению Федорова, объединит все миры и станет «планетоводом».

Идеи Федорова о расселении людей на другие планеты поддерживал его ученик, один из основателей ракетостроения и теории космических полетов К. Э. Циолковский. На основании своей идеи о всеобщности жизни, везде существующей в виде вечно живых атомов, Циолковский построил свою «космическую философию».

Он полагал, что жизнь и разум на земле не являются единственными во Вселенной. Космическое пространство заселено разумными существами различного уровня развития. Во Вселенной есть планеты, которые по развитию разума и могущества достигли высшей степени и опередили другие. Эти «совершенные» планеты обладают моральным правом регулировать жизнь на других, пока более примитивных планетах.

Циолковский полагал, что нашей планете во Вселенной при­надлежит особая роль. Земля относится к категории молодых планет, «подающих надежды». Лишь небольшому числу таких планет будет дано право на самостоятельное развитие. К их числу относится и Земля. В эволюции планет постепенно будет образован союз всех разумных высших существ космоса. Задача Земли в этом союзе - внести свой вклад в совершенствование космоса. Для этого землянам необходимо приступить к косми­ческим полетам и начать расселяться на других планетах Все­ленной. В этом и состоит основная идея его «космической философии»: переселение с Земли и заселение Космоса.

В этом заключается новое понимание места и роли человека в мире. Отныне он стал пониматься как вер­шина развития материи на Земле, в Солнечной системе, а может быть, и во Вселенной. Он становится силой, способной в перспективе осваивать и преобразовывать природу в космических масштабах. Итогом этих размышлений о роли человека стало формулирование антропного принципа в современ­ной науке.

Наука столкнулась с большой группой фак­тов, раздельное рассмотрение которых создает впечатление необъяснимых случайных совпадений, граничащих с чудом. Вероятность каждого подобного совпадения очень мала, а уж их совместное существование и вовсе невероятно. Тогда вполне обоснованной представляется постановка вопроса о существовании пока не познанных закономерностей, которые способны организовать Вселенную определенным образом и следствиями которых мы столкнулись.

В этой ситуации был выдвинут и в настоящее время ши­роко обсуждается антропный принцип. В 70-е годы в двух вариантах его сформулировал английский ученый Картер. Первый из них получил наименование слабого антропного принципа: «То, что мы предполагаем наблюдать, должно удовлетворять условиям, необходимым для присутствия человека в качестве наблюдателя». Второй вариант назван сильным антропным принципом: «Вселенная должна быть такой, чтобы в ней на некоторой стадии эволюции мог существовать наблюдатель».

Слабый антропный принцип интерпретируется так, что в ходе эволюции Вселенной могли существовать самые разные условия, но человек-наблюдатель видит мир только на том этапе, на котором реализовались условия, необходимые для его существования. В частности, для появления человека пона­добилось, чтобы в ходе расширения вещества Вселенная про­шла все необходимые стадии. Понятно, что человек не мог наблюдать их, так как физические условия то­гда не обеспечивали его появления. Раз человек есть, то он увидит вполне определен­ным образом устроенный мир, ибо ничего другого ему уви­деть не дано.

Более серьезное содержание заложено в сильном антропном принципе. По существу, речь идет о случайном или зако­номерном происхождении «тонкой подстройки» Вселенной. Признание закономерного устройства Вселенной влечет за со­бой признание принципа, организующего ее. Если же считать «тонкую подстройку» случайной, то приходится постулиро­вать множественное рождение вселенных, в каждой из которых случайным образом реализуются случайные значения физиче­ских постоянных. В какой-то из них случайно возникнет «тонкая подстройка», обеспечивающая появление на определенном этапе развития наблюдателя, и он увидит вполне благоустроенный мир, о случайном возникно­вении которого первоначально не будет подозревать. Правда, вероятность этого очень мала.

Если же мы признаем «тонкую подстройку» изначально за­ложенной во Вселенной, то линия ее последующего развития предопределена, а появление наблюдателя на соответствую­щем этапе неизбежно. Из этого следует, что в родившейся Все­ленной потенциально было заложено ее будущее, а процесс развития приобретает целенаправленный характер. Появление разума не только заранее «запланировано», но и имеет опреде­ленное предназначение, которое проявит себя в последующем процессе развития.

Пока мы еще слишком мало знаем о Вселенной, ведь земная жизнь - это только малая часть гигантского целого. Но мы можем строить любые догадки, если они не противоречат познанным законам природы. И вполне возможно, что если человечество продолжит свое существование, если его способность познавать себя и окружающий мир сохранится, то одной из главных задач будущего научного поиска человече­ства станет осознание своего предназначения во Вселенной.