Презентация на тему "производство электрической энергии". Презентация, доклад производство и использование электрической энергии Презентация на тему производство других видов энергии


Использование электроэнергии Главным потребителем электроэнергии является промышленность, на долю которой приходится около 70% производимой электроэнергии. Крупным потребителем является также транспорт. Все большее количество железнодорожных линий переводится на электрическую тягу.






Около трети электроэнергии, потребляемой промышленностью, используется для технологических целей (электросварка, электрический нагрев и плавление металлов, электролиз и т. п.). Современная цивилизация немыслима без широкого использования электроэнергии. Нарушение снабжения электроэнергией большого города при аварии парализует его жизнь.


Передача электроэнергии Потребители электроэнергии имеются повсюду. Производится же она в сравнительно немногих местах, близких к источникам топливо- и гидроресурсов. Электроэнергию не удается консервировать в больших масштабах. Она должна быть потреблена сразу же после получения. Поэтому возникает необходимость в передаче электроэнергии на большие расстояния.


Передача энергии связана с заметными потерями. Дело в том, что электрический ток нагревает провода линий электропередачи. В соответствии с законом Джоуля-Ленца энергия, расходуемая на нагрев проводов линии, определяется формулой где R – сопротивление линии.




Так как мощность тока пропорциональна произведению силы тока на напряжение, то для сохранения передаваемой мощности нужно повысить напряжение в линии передачи. Чем длиннее линия передачи, тем выгоднее использовать более высокое напряжение. Так, в высоковольтной линии передачи Волжская ГЭС – Москва и некоторых других используют напряжение 500 кВ. Между тем генераторы переменного тока строят на напряжения, не превышающие кВ.


Более высокое напряжение потребовало бы принятия сложных специальных мер для изоляции обмоток и других частей генераторов. Поэтому на крупных электростанциях ставят повышающие трансформаторы. Для непосредственного использования электроэнергии в двигателях электропривода станков, в осветительной сети и для других целей напряжение на концах линии нужно понизить. Это достигается с помощью понижающих трансформаторов.





В последнее время, в связи с экологическими проблемами, дефицитом ископаемого топлива и его неравномерным географическим распределением, становится целесообразным вырабатывать электроэнергию используя ветроэнергетические установки, солн ечные батареи, малые газогенераторы





Слайд 1

Описание слайда:

Слайд 2

Описание слайда:

Слайд 3

Описание слайда:

Слайд 4

Описание слайда:

Слайд 5

Описание слайда:

Слайд 6

Описание слайда:

Слайд 7

Описание слайда:

Слайд 8

Описание слайда:

Слайд 9

Описание слайда:

Использование электроэнергии в областях науки Наука непосредственно влияет на развитие энергетики и сферу применения электроэнергии. Около 80% прироста ВВП развитых стран достигается за счет технических инноваций, основная часть которых связана с использованием электроэнергии. Все новое в промышленность, сельское хозяйство и быт приходит к нам благодаря новым разработкам в различных отраслях науки. Большая часть научных разработок начинается с теоретических расчетов. Но если в ХIХ веке эти расчеты производились с помощью пера и бумаги, то в век НТР (научно-технической революции) все теоретические расчеты, отбор и анализ научных данных и даже лингвистический разбор литературных произведений делаются с помощью ЭВМ (электронно-вычислительных машин), которые работают на электрической энергии, наиболее удобной для передачи ее на растояние и использования. Но если первоначально ЭВМ использовались для научных расчетов, то теперь из науки компьютеры пришли в жизнь. Электронизация и автоматизация производства - важнейшие последствия "второй промышленной" или "микроэлектронной« революции в экономике развитых стран. Очень бурно развивается наука в области средств связи и коммуникаций.

Слайд 10

Описание слайда:

Слайд 11

Описание слайда:

Производство, передача и использование электрической энергии Вопрос

  • Какими преимуществами обладает переменный ток перед постоянным?
Генератор
  • Генератор - устройства, преобразующие энергию того или иного вида в электрическую энергию.
Виды энергии Генератор переменного тока
  • Генератор состоит из
  • постоянного магнита, создающего магнитное поле, и обмотки, в которой индуцируется переменная ЭДС
  • Преобладающую роль в наше время играют электромеханические индукционные генераторы переменного тока. Там механическая энергия превращается в электрическую.
Трансформаторы
  • ТРАНСФОРМАТОР– аппарат, преобразующий переменный ток, при котором напряжение увеличивается или уменьшается в несколько раз практически без потери мощности.
  • В простейшем случае трансформатор состоит из замкнутого стального сердечника, на который надеты две катушки с проволочными обмотками. Та из обмоток, которая подключается к источнику переменного напряжения, называется первичной, а та, к которой присоединяют «нагрузку», т. е. приборы, потребляющие электроэнергию, называется вторичной.
Трансформатор
  • Первичная Вторичная
  • обмотка обмотка
  • Подключается
  • к источнику
  • ~ напряжения к «нагрузке»
  • замкнутый стальной сердечник
  • Принцип действия трансформатора основан на явлении электромагнитной индукции.
Характеристика трансформатора
  • Коэффициент трансформации
  • U1/U2 =N1/N2=K
  • K>1трансформатор понижающий
  • K<1трансформатор повышающий
Производство электрической энергии
  • Производится электроэнергия на больших и малых электрических станциях в основном с помощью электромеханических индукционных генераторов. Существует несколько типов электростанций: тепловые, гидроэлектрические и атомные электростанции.
  • Тепловые электростанции
Использование электроэнергии
  • Главным потребителем электроэнергии является промышленность, на долю которой приходится около 70% производимой электроэнергии. Крупным потребителем является также транспорт. Все большее количество железнодорожных линий переводиться на электрическую тягу. Почти все деревни и села получают электроэнергию от государственных электростанций для производственных и бытовых нужд. Около трети электроэнергии, потребляемой промышленностью, используются для технологических целей (электросварка, электрический нагрев и плавление металлов, электролиз и т. п.).
Передача электроэнергии
  • Трансформаторы изменяют напряжение
  • в нескольких точках линии.
Эффективное использование электроэнергии
  • Потребность в электроэнергии постоянно увеличивается. Удовлетворить эту потребность можно двумя способами.
  • Самый естественный и единственный на первый взгляд способ – строительство новых мощных электростанций. Но ТЭС потребляют не возобновляемые природные ресурсы, а также наносят большой ущерб экологическому равновесию на нашей планете.
  • Передовые технологии позволяют удовлетворить потребности в электроэнергии другим способом. Приоритет должен быть отдан увеличению эффективности использования электроэнергии, а не росту мощности электростанций.
Задачи
  • № 966, 967
Ответ
  • 1) напряжение и силу тока можно в очень широких пределах преобразовывать (трансформировать) почти без потерь энергии;
  • 2)переменный ток легко преобразуется в постоянный
  • 3)генератор переменного тока намного проще и дешевле.
Домашнее задание
  • §§38-41 упр 5 (с 123)
  • ПОДУМАЙ:
  • ПОЧЕМУ ГУДИТ ТРАНСФОРМАТОР?
  • Подготовить презентацию «Использование трансформаторов»
  • (для желающих)
Список литературы:
  • Физика. 11 класс: учебник для общеобразовательных учреждений: базовый и профил. уровни /Г.Я. Мякишев, Б.Б. Буховцев. – М:Просвещение, 2014. – 399 с
  • О.И. Громцева. Физика. ЕГЭ. Полный курс. – М.: Издательство «Экзамен», 2015.-367 с
  • Волков В.А. Универсальные поурочные разработки по физике. 11 класс. – М.: ВАКО, 2014. – 464 с
  • Рымкевич А.П., Рымкевич П.А. Сборник задач по физике для 10-11 классов средней школы. – 13 изд. – М.: Просвещение,2014. – 160 с

Слайд 1

Урок физики в 11б классе с использованием регионального компонента. Автор: С.В.Гаврилова - учитель физики МКОУ СОШ с. Владимиро-Александровское 2012 год
Тема. Производство, передача и использование электрической энергии

Слайд 2

Тип урока: урок изучения нового материала с использованием регионального материала. Цель урока: изучение использования электроэнергии, начиная с процесса её генерирования. Задачи урока: Образовательная: конкретизировать представление школьников о способах передачи электроэнергии, о взаимных переходах одного вида энергии в другой. Развивающая: дальнейшее развитие у учащихся практических навыков исследовательского характера, выведение познавательной активности детей на творческий уровень знаний, развитие аналитических навыков (при выяснении расположения различных видов электростанций на территории Приморского края). Воспитательная: отработка и закрепление понятия «энергосистема» на краеведческом материале, воспитание бережного отношения к расходованию электроэнергии. Оборудование к уроку: учебник физики для 11 класса Г.Я.Мякишев, Б.Б.Буховцев, В.М.Чаругин. Классический курс. М., «Просвещение», 2009г; слайдовая презентация к уроку; проектор; экран.

Слайд 3

Какое устройство называют трансформатором? На каком явлении основан принцип действия трансформатора? Какая обмотка трансформатора является первичной? Вторичной? Дайте определение коэффициента трансформации. Как определяют КПД трансформатора?
Повторение

Слайд 4

Как наша прожила б планета, Как люди жили бы на ней Без теплоты, магнита, света И электрических лучей? А. Мицкевич

Слайд 6

Опережающее развитие электроэнергетики; Повышение мощности электростанций; Централизация производства электроэнергии; Широкое использование местного топлива и энергетических ресурсов; Постепенный переход промышленности, сельского хозяйства, транспорта на электроэнергию.
план ГОЭЛРО

Слайд 7

Электрификация Владивостока
В феврале 1912 года во Владивостоке была введена в эксплуатацию первая электростанция общего пользования, получившая название ВГЭС №1. Станция стала родоначальницей "большой" энергетики в Приморском крае. Ее мощность составила 1350 кВт.

Слайд 8

К 20 июня 1912 года станция обеспечивала энергией 1785 абонентов Владивостока, 1200 уличных фонарей. С момента пуска трамвая 27 октября 1912 г. станция работала с перегрузкой.

Слайд 9

Бурный рост Владивостока, а также реализация планов ГОЭЛРО заставили заняться расширением электрической станции. В 1927-28 гг., а затем в 1930-1932 гг. на ней были проведены работы по демонтажу старого и установке нового оборудования. В первую очередь был произведен капитальный ремонт всех котлов и паротурбин, которые гарантировали непрерывную работу станции с отпуском энергии до 2775 кВт в час. В 1933 г. станция закончила свою реконструкцию и достигла мощности 11 000 кВт.

Слайд 10

– Почему именно развитие электроэнергетики было поставлено на первое место для развития государства? – В чем преимущество электроэнергии перед другими видами энергии? – Как осуществляется передача электроэнергии? – Какова энергосистема нашего региона?

Слайд 11

Передача по проводам в любой населенный пункт; Легкое превращение в любые виды энергии; Легкое получение из других видов энергии.
Преимущество электроэнергии перед другими видами энергии.

Слайд 12

Виды энергии преобразуемые в электрическую

Слайд 13

Ветряные (ВЭС) Тепловые (ТЭС) Водяные (ГЭС) Атомные (АЭС) Геотермальные Солнечные
В зависимости от вида преобразуемой энергии электростанции бывают:
Где производится электроэнергия?

Слайд 14

Слайд 15

Владивостокская ТЭЦ-1
С 1959 года станция стала работать на тепловую нагрузку, для чего на ней был проведен ряд мероприятий по переводу ее на теплофикационный режим. В 1975 году выработка электроэнергии на ВТЭЦ-1 была прекращена, ТЭЦ стала специализироваться исключительно на выработке тепла. Сегодня она по-прежнему в строю, успешно работает, снабжая теплом Владивосток. В 2008 году на площадке ВТЭЦ-1 установлены две мобильные газотурбинные установки, общей мощностью 45 МВт.
На строительстве станции

Слайд 16

Владивостокская ТЭЦ-2
- самая молодая станция в Приморском крае и самая мощная в структуре приморской генерации.
Громадную ТЭЦ-2 возвели за короткие сроки. 22 апреля 1970 года были пущены и включены первые агрегаты станции: турбина и два котла.
В настоящее время на Владивостокской ТЭЦ-2 эксплуатируются 14 однотипных котлов паропроизводительностью 210 тонн/час пара каждый и 6 турбоагрегатов. Владивостокская ТЭЦ-2 является основным источником по обеспечению производственным паром, тепловой и электрической энергией промышленности и населения Владивостока. Основным видом топлива для теплоэлектростанций является уголь.

Слайд 17

Партизанская ГРЭС
Партизанская государственная районная электростанция (ГРЭС) является основным источником электроснабжения юго-восточной части Приморского края. Строительство электростанции в непосредственной близости от Сучанского угольного района было намечено еще в 1939–1940 годах, но с началом Великой Отечественной войны работа над проектом остановилась.
С 1.02.2010г на Партизанской ГРЭС введена турбина

Слайд 18

Артемовская ТЭЦ
6 ноября 1936 года был произведен пробный пуск первой турбины новой станции. Этот день энергетики считают днем рождения Артемовской государственной районной электростанции. Уже 18 декабря того же года Артемовская ГРЭС вошла в строй действующих предприятий Приморья. 6 ноября 2012 года Артёмовская ТЭЦ отметила своё 76-летие.
В 1984 году станция переведена в категорию теплоэлектроцентралей.

Слайд 19

Приморская ГРЭС
15 января 1974 года состоялся пуск 1-го энергоблока самой крупной тепловой электростанции Дальнего Востока - Приморской ГРЭС. Ввод ее в эксплуатацию стал важнейшей вехой в социально-экономическом развитии региона, который в 60-70-е годы испытывал большой дефицит электроэнергии.
Пуск 1-го энергоблока, последовавшее строительство и ввод остальных восьми энергоблоков Приморской ГРЭС помогли Объединенной энергосистеме Дальнего Востока кардинально решить проблему обеспечения растущей потребности региона в электроэнергии. Сегодня станция вырабатывает половину объема электроэнергии, потребляемой в Приморском крае, и производит тепловую энергию для п.Лучегорск.

Слайд 20

Передача электроэнергии.

Слайд 21

Основные потребителями электроэнергии
Промышленность (почти 70%) Транспорт Сельское хозяйство Бытовые нужды населения

Слайд 22

Трансформатор
устройство, позволяющее преобразовывать переменный электрический ток, таким образом, что при повышении напряжении, сила тока будет уменьшаться и наоборот.

Слайд 23

Слайд 24


В ОЭС Дальнего Востока входят энергосистемы следующих регионов: Амурской области; Хабаровского края и Еврейской автономной области; Приморского края; Южно-Якутского энергорайона Республики Саха (Якутия). ОЭС Востока работает изолированно от ЕЭС России.

Слайд 25

Выработка электроэнергии в регионах Дальнего Востока в 1980-1998 годах (млрд кВт-ч)
Регион 1980 1985 1990 1991 1992 1993 1994 1995 1996 1997 1998
Дальний Восток 30,000 38,100 47,349 48,090 44,2 41,4 38,658 36,600 35,907
Приморский край 11,785 11,848 11,0 10,2 9,154 8,730 7,682
Хабаровский край 9,678 10,125 9,7 9,4 7,974 7,566 7,642
Амурская область 4,415 7,059 7,783 7,528 7,0 7,0 7,074 6,798 6,100 5,600 5,200
Камчатская область 1,223 1,526 1,864 1,954 1,9 1,8 1,576 1,600 1,504
Магаданская область 3,537 3,943 4,351 4,376 3,4 3,0 2,72 2,744 2,697
Сахалинская область 2,595 3,009 3,41 3,505 2,8 2,7 2,712 2,390 2,410
Республика Саха 4,311 5,463 8,478 8,754 8,4 7,3 6,998 6,887 7,438
Чукотский АО - - - - н.д. н.д. 0,450 0,447 0,434 0,341 0,350

Слайд 26

Энергосистема Дальнего Востока
На Дальнем Востоке генерирующие мощности и передающие сети объединены в шесть энергосистем. Самые крупные из них охватывают Приморский край (установленная мощность 2692 тыс. кВт) и Республику Саха (2036 тыс. кВт). Остальные энергосистемы имеют мощность менее 2 млн кВт. С целью обеспечения устойчивого и экономически эффективного энергоснабжения труднодоступных районов в Приморском крае планируется продолжить строительство малых ГЭС.

Слайд 27

Проверьте себя (проверочная работа)
Вариант 1 I. Что является источником энергии на ТЭС? 1. Нефть, уголь, газ 2. Энергия ветра 3. Энергия воды II. В какой области народного хозяйства расходуется наибольшее количество производимой электроэнергии? 1. В промышленности 2. В транспорте 3. В сельском хозяйстве III. Как изменится выделяемое проводами количество теплоты, если увеличить площадь поперечного сечения провода S? 1. Не изменится 2. Уменьшится 3. Увеличится IV, Какой трансформатор нужно поставить на линии при выходе из электростанции? 1. Понижающий 2. Повышающий 3. Трансформатор не нужен V. Энергосистема - это 1. Электрическая система электростанции 2. Электрическая система отдельного города 3. Электрическая система районов страны, соединенная высоковольтными линиями электропередачи
Вариант 2 I. Что является источником энергии на ГЭС? 1. Нефть, уголь, газ 2. Энергия ветра 3. Энергия воды II. Трансформатор предназначен 1. Для увеличения срока службы проводов 2. Для преобразования энергии 3. Для уменьшения выделяемого проводами количество теплоты III. Энергосистема - это 1. Электрическая система электростанции 2. Электрическая система отдельного города 3. Электрическая система районов страны, соединенная высоковольтными линиями электропередачи IV. Как изменится выделяемое проводами количество теплоты, если уменьшить длину провода? 1. Не изменится 2. Уменьшится 3. Увеличится V. Какой трансформатор нужно поставить на линии при входе город? 1. Понижающий 2. Повышающий 3. Трансформатор не нужен

Слайд 28

Как наша прожила б планета, Как люди жили бы на ней Без теплоты, магнита, света И электрических лучей?
А. Мицкевич

Слайд 29

Спасибо за работу на уроке!
Д.З. § 39-41 «Использование солнечной энергии для теплоснабжения в Приморском крае». «О целесообразности использования ветровой энергии в приморском крае». «Новые технологии в мировой энергетике XXI века»

краткое содержание других презентаций

«Урок Электромагнитная индукция» - Тип урока – урок изучения нового материала. Явление электромагнитной индукции. Правило Ленца.

«Видимое излучение» - Инфракрасное излучение было открыто в 1800 году английским астрономом У. Гершелем. МКОУ СОШ п. Заря. Применение. Инфракрасное излучение испускают возбуждённые атомы или ионы. Видимое излучение (свет) далеко не исчерпывает возможные виды излучений. С видимым излучением соседствует инфракрасное. Инфракрасное излучение. Работу выполнила: учащаяся 11 класса Быкова Наталия.

«Интерференция световых волн» - Качественные задачи (этап V?). Не изменится Увеличится Уменьшится. Условия когерентности световых волн (этап?V). Интерференция световых волн (этап?V). Задание 1. (этап V). Первый эксперимент по наблюдению интерференции света в лабораторных условиях принадлежит И. Ньютону. Можно ли наблюдать интерференцию света от двух поверхностей оконного стекла? Чем объясняется радужная окраска тонких нефтяных пленок? Опыт Юнга.

«Производство передача и использование электроэнергии» - U = Um sin(2?n t + ?0). 100 %. 1,5%. А) режим холостого хода б) режим нагрузки. Топливо. Трансформатор. Действие трансформатора основано на явлении электромагнитной индукции. Генератор. Атомная электростанция. a. Использование электрической. Схема потерь электроэнергии на пути от электростанции к потребителю. Энергии. Гидростанция. Передача электроэнергии.

«Радиолокация по физике» - Слабые сигналы усиливаются в усилителе и поступают на индикатор. Гипотеза: Теоретическая часть. Отражённые импульсы распространяются по всем направлениям. МОУ « Гимназия №1». Физика. В радиолокации используют электромагнитные волны СВЧ. Систематизировать знания по теме «Радиолокация». Актуальность: « Радиолокация» 2008 г.

«Световые волны» - Поляризация света. Дано: Найти: -? -? Теперь лучам приходится проходить в атмосфере все больший и больший путь. Свет – поперечная волна. Почему небо голубое? А. 0,8 см. 4. Три дифракционные решетки имеют 150, 2100, 3150 штрихов на 1мм. Дифракция света. Отклонение от прямолинейного распространения волн, огибание волнами препятствий называется дифракцией. А. 2,7 * 107м. В. 0,5 *10-6м. А1. (A) жук P. Boucardi; (b)-(f) надкрылья жука при разном увеличении. А. 600 нм, Б. 800 нм.