Нормальный закон распределения вероятностей непрерывной случайной величины. Нормальное распределение (Гаусса) в Excel Математическое ожидание нормально распределенной случайной величины x

Подставив φ(x)=π /4 ,f(x)=1/(b-a)

D[π /4]=( /720) ).

№319 Ребро куба x измерено приближенно, причем a . Рассматривая ребро куба как случайную величину X,распределенную равномерно в интервале (a,b),найти математическое ожидание и дисперсию объема куба.

1.Найдем математическое ожидание площади круга – случайной величины Y=φ(K)= - по формуле

M[φ(X)]=

Поставив φ(x)= ,f(x)=1/(b-a) и выполнив интегрирование, получим

M( )=
.

2.Найдём дисперсию площади круга по формуле

D [φ(X)]= - .

Подставив φ(x)= ,f(x)=1/(b-a) и выполнив интегрирование, получим

D = .

№320 Случайные величины X и Y независимы и распределены равномерно: X-в интервале (a,b),Y-в интервале (c,d).Найти математическое ожидание произведения XY.

Математическое ожидание произведения независимых случайных величин равно произведению их математических ожиданий, т.е.

M(XY)=

№321 Случайные величины X и Y независимы и распределены равномерно: X- в интервале (a,b), Y – в интервале (c,d). Найти дисперсию произведения XY.

Воспользуемся формулой

D(XY)=M[

Математическое ожидание произведения независимых случайных величин равно произведению их математических ожиданий, поэтому

Найдем M по формуле

M[φ(X)]=

Подставляя φ(x)= ,f(x)=1/(b-a) и выполняя интегрирование,получим

M (**)

Аналогично найдем

M (***)

Подставив M(X)=(a+b)/2, M(Y)=(c+d)/2 ,а так же (***) и (**) в (*),окончательно получим

D(XY)= -[ .

№322 Математическое ожидание нормально распределённой случайной величины X равно a=3 и среднее квадратическое отклонение σ=2.Написать плотность вероятности X.

Воспользуемся формулой:

f(x)= .

Подставляя имеющиеся значения получим:

f(x)= = f(x)= .

№323 Написать плотность вероятности нормально распределенной случайной величины X, зная, что M(X)=3, D(X)=16.

Воспользуемся формулой:

f(x)= .

Для того, чтобы найти значение σ воспользуемся свойством, что среднее квадратическое отклонение случайной величины X равно квадратному корню из ее дисперсии. Следовательно σ=4, M(X)=a=3. Подставляя в формулу получим

f(x)= = .

№324 Нормально распределенная случайная величина X задана плотностью

f(x)= . Найти математическое ожидание и дисперсию X.

Воспользуемся формулой

f(x)= ,

где a -математическое ожидание, σ -среднее квадратическое отклонение X. Из этой формулы следует, что a=M(X)=1 . Для нахождения дисперсии воспользуемся свойством, что среднее квадратическое отклонение случайной величины X равно квадратному корню из ее дисперсии. Следовательно D(X)= =

Ответ: математическое ожидание равно 1; дисперсия равна 25.

Бондарчук Родион

Дана функция распределения нормированного нормального закона . Найти плотность распределения f(x).

Зная, что , находим f(x).

Ответ:

Доказать, что функция Лапласа . нечетна: .

Произведем замену

Делаем обратную замену и получаем:

= =



Нормальный закон распределения (часто называемый законом Гаусса) играет исключительно важную роль в теории вероятностей и занимает среди других законов распределения особое положение. Это – наиболее часто встречающийся на практике закон распределения. Главная особенность, выделяющая нормальный закон среди других законов, состоит в том, что он является предельным законом, к которому приближаются другие законы распределения при весьма часто встречающихся типичных условиях.

Можно доказать, что сумма достаточно большого числа независимых (или слабо зависимых) случайных величин, подчиненных каким угодно законам распределения (при соблюдении некоторых весьма нежестких ограничений), приближенно подчиняется нормальному закону, и это выполняется тем точнее, чем большее количество случайных величин суммируется. Большинство встречающихся на практике случайных величин, таких, например, как ошибки измерений, ошибки стрельбы и т.д., могут быть представлены как суммы весьма большого числа сравнительно малых слагаемых – элементарных ошибок, каждая из которых вызвана действием отдельной причины, не зависящей от остальных. Каким бы законам распределения ни были подчинены отдельные элементарные ошибки, особенности этих распределений в сумме большого числа слагаемых нивелируются, и сумма оказывается подчиненной закону, близкому к нормальному. Основное ограничение, налагаемое на суммируемые ошибки, состоит в том, чтобы они все равномерно играли в общей сумме относительно малую роль. Если это условие не выполняется и, например, одна из случайных ошибок окажется по своему влиянию на сумму резко превалирующей над всеми другими, то закон распределения этой превалирующей ошибки наложит свое влияние на сумму и определит в основных чертах её закон распределения.

Теоремы, устанавливающие нормальный закон как предельный для суммы независимых равномерно малых случайных слагаемых, будут подробнее рассмотрены в главе 13.

Нормальный закон распределения характеризуется плотностью вероятности вида:

Кривая распределения по нормальному закону имеет симметричный холмообразный вид (рис. 6.1.1). Максимальная ордината кривой, равная , соответствует точке ; по мере удаления от точки плотность распределения падает, и при кривая асимптотически приближается к оси абсцисс.

Выясним смысл численных параметров и , входящих в выражение нормального закона (6.1.1); докажем, что величина есть не что иное, как математическое ожидание, а величина - среднее квадратическое отклонение величины . Для этого вычислим основные числовые характеристики величины - математическое ожидание и дисперсию.

Применяя замену переменной

Нетрудно убедиться, что первый из двух интервалов в формуле (6.1.2) равен нулю; второй представляет собой известный интеграл Эйлера-Пуассона:

. (6.1.3)

Следовательно,

т.е. параметр представляет собой математическое ожидание величины . Этот параметр, особенно в задачах стрельбы, часто называют центром рассеивания (сокращенно – ц. р.).

Вычислим дисперсию величины :

.

Применив снова замену переменной

.

Интегрируя по частям, получим:

Первое слагаемое в фигурных скобках равно нулю (так как при убывает быстрее, чем возрастает любая степень ), второе слагаемое по формуле (6.1.3) равно , откуда

Следовательно, параметр в формуле (6.1.1) есть не что иное, как среднее квадратическое отклонение величины .

Выясним смысл параметров и нормального распределения. Непосредственно из формулы (6.1.1) видно, что центром симметрии распределения является центр рассеивания . Это ясно из того, что при изменении знака разности на обратный выражение (6.1.1) не меняется. Если изменять центр рассеивания , кривая распределения будет смещаться вдоль оси абсцисс, не изменяя своей формы (рис. 6.1.2). Центр рассеивания характеризует положение распределения на оси абсцисс.

Размерность центра рассеивания – та же, что размерность случайной величины .

Параметр характеризует не положение, а самую форму кривой распределения. Это есть характеристика рассеивания. Наибольшая ордината кривой распределения обратно пропорциональна ; при увеличении максимальная ордината уменьшается. Так как площадь кривой распределения всегда должна оставаться равной единице, то при увеличении кривая распределения становится более плоской, растягиваясь вдоль оси абсцисс; напротив, при уменьшении кривая распределения вытягивается вверх, одновременно сжимаясь с боков, и становится более иглообразной. На рис. 6.1.3 показаны три нормальные кривые (I, II, III) при ; из них кривая I соответствует самому большому, а кривая III – самому малому значению . Изменение параметра равносильно изменению масштаба кривой распределения – увеличению масштаба по одной оси и такому же уменьшению по другой.

Определение. Нормальным называется распределение вероятностей непрерывной случайной величины, которое описывается плотностью вероятности

Нормальный закон распределения также называется законом Гаусса .

Нормальный закон распределения занимает центральное место в теории вероятностей. Это обусловлено тем, что этот закон проявляется во всех случаях, когда случайная величина является результатом действия большого числа различных факторов. К нормальному закону приближаются все остальные законы распределения.

Можно легко показать, что параметры и, входящие в плотность распределения являются соответственно математическим ожиданием и среднеквадратическим отклонением случайной величиныХ .

Найдём функцию распределения F (x ) .

График плотности нормального распределения называется нормальной кривой или кривой Гаусса .

Нормальная кривая обладает следующими свойствами:

1) Функция определена на всей числовой оси.

2) При всех х функция распределения принимает только положительные значения.

3) Ось ОХ является горизонтальной асимптотой графика плотности вероятности, т.к. при неограниченном возрастании по абсолютной величине аргумента х , значение функции стремится к нулю.

4) Найдём экстремум функции.

Т.к. при y ’ > 0 при x < m и y ’ < 0 при x > m , то в точке х = т функция имеет максимум, равный
.

5) Функция является симметричной относительно прямой х = а , т.к. разность

(х – а ) входит в функцию плотности распределения в квадрате.

6) Для нахождения точек перегиба графика найдем вторую производную функции плотности.

При x = m +  и x = m -  вторая производная равна нулю, а при переходе через эти точки меняет знак, т.е. в этих точках функция имеет перегиб.

В этих точках значение функции равно
.

Построим график функции плотности распределения (рис. 5).

Построены графики при т =0 и трёх возможных значениях среднеквадратичного отклонения  = 1,  = 2 и  = 7. Как видно, при увеличении значения среднего квадратичного отклонения график становится более пологим, а максимальное значение уменьшается.

Если а > 0, то график сместится в положительном направлении, если а < 0 – в отрицательном.

При а = 0 и  = 1 кривая называется нормированной . Уравнение нормированной кривой:

      Функция Лапласа

Найдём вероятность попадания случайной величины, распределенной по нормальному закону, в заданный интервал.

Обозначим

Т.к. интеграл
не выражается через элементарные функции, то вводится в рассмотрение функция

,

которая называется функцией Лапласа или интегралом вероятностей .

Значения этой функции при различных значениях х посчитаны и приводятся в специальных таблицах.

На рис. 6 показан график функции Лапласа.

Функция Лапласа обладает следующими свойствами:

1) Ф(0) = 0;

2) Ф(-х) = - Ф(х);

3) Ф() = 1.

Функцию Лапласа также называют функцией ошибок и обозначают erf x .

Ещё используетсянормированная функция Лапласа, которая связана с функцией Лапласа соотношением:

На рис. 7 показан график нормированной функции Лапласа.

      Правило трёх сигм

При рассмотрении нормального закона распределения выделяется важный частный случай, известный как правило трёх сигм .

Запишем вероятность того, что отклонение нормально распределенной случайной величины от математического ожидания меньше заданной величины :

Если принять  = 3, то получаем с использованием таблиц значений функции Лапласа:

Т.е. вероятность того, что случайная величина отклонится от своего математического ожидание на величину, большую чем утроенное среднее квадратичное отклонение, практически равна нулю.

Это правило называется правилом трёх сигм .

Не практике считается, что если для какой-либо случайной величины выполняется правило трёх сигм, то эта случайная величина имеет нормальное распределение.

Заключение по лекции:

В лекции мы рассмотрели законы распределения непрерывных величин В ходе подготовки к последующей лекции и практическим занятиям вы должны самостоятельно при углубленном изучении рекомендованной литературы и решения предложенных задач дополнить свои конспекты лекций.

Как было сказано ранее, примерами распределений вероятностей непрерывной случайной величины Х являются:

  • равномерное распределение
  • показательное распределение вероятностей непрерывной случайной величины;
  • нормальное распределение вероятностей непрерывной случайной величины.

Дадим понятие нормального закона распределения, функции распределения такого закона, порядка вычисления вероятности попадания случайной величины Х в определенный интервал.

Показатель Нормальный закон распределения Примечание
Определение Нормальным называется распределение вероятностей непрерывной случайной величины X, плотность которого имеет вид
где m x – математическое ожидание случайной величины Х, σ x – среднее квадратическое отклонение
2 Функция распределения
Вероятность попадания в интервал (а;b)
- интегральная функция Лапласа
Вероятность того, что абсолютная величина отклонения меньше положительного числа δ при m x = 0

Пример решения задачи по теме «Нормальный закон распределения непрерывной случайной величины»

Задача.

Длина X некоторой детали представляет собой случайную величину, распределенную по нормальному закону распределения, и имеет среднее значение 20 мм и среднее квадратическое отклонение – 0,2 мм.
Необходимо:
а) записать выражение плотности распределения;
б) найти вероятность того, что длина детали будет заключена между 19,7 и 20,3 мм;
в) найти вероятность того, что величина отклонения не превышает 0,1 мм;
г) определить, какой процент составляют детали, отклонение которых от среднего значения не превышает 0,1 мм;
д) найти, каким должно быть задано отклонение, чтобы процент деталей, отклонение которых от среднего не превышает заданного, повысился до 54%;
е) найти интервал, симметричный относительно среднего значения, в котором будет находиться X с вероятностью 0,95.

Решение. а) Плотность вероятности случайной величины X, распределенной по нормальному закону находим :

при условии, что m x =20, σ =0,2.

б) Для нормального распределения случайной величины вероятность попасть в интервал (19,7; 20,3) определяется :
Ф((20,3-20)/0,2) – Ф((19,7-20)/0,2) = Ф(0,3/0,2) – Ф(-0,3/0,2) = 2Ф(0,3/0,2) = 2Ф(1,5) = 2*0,4332 = 0,8664.
Значение Ф(1,5) = 0,4332 мы нашли в приложениях, в таблице значений интегральной функции Лапласа Φ(x) (таблица 2 )

в) Вероятность того, что абсолютная величина отклонения меньше положительного числа 0,1 найдем :
Р(|Х-20| < 0,1) = 2Ф(0,1/0,2) = 2Ф(0,5) = 2*0,1915 = 0,383.
Значение Ф(0,5) = 0,1915 мы нашли в приложениях, в таблице значений интегральной функции Лапласа Φ(x) (таблица 2 )

г) Поскольку вероятность отклонения, меньшего 0,1 мм, равна 0,383, то отсюда следует, что в среднем 38,3 детали из 100 окажутся с таким отклонением, т.е. 38,3%.

д) Поскольку процент деталей, отклонение которых от среднего не превышает заданного, повысился до 54%, то Р(|Х-20| < δ) = 0,54. Отсюда следует, что 2Ф(δ/σ) = 0,54, а значит Ф(δ/σ) = 0,27.

Используя приложение (таблица 2 ), находим δ/σ = 0,74. Отсюда δ = 0,74*σ = 0,74*0,2 = 0,148 мм.

е) Поскольку искомый интервал симметричен относительно среднего значения m x = 20, то его можно определить как множество значений X, удовлетворяющих неравенству 20 − δ < X < 20 + δ или |x − 20| < δ .

По условию вероятность нахождения X в искомом интервале равна 0,95, значит P(|x − 20| < δ)= 0,95. С другой стороны P(|x − 20| < δ) = 2Ф(δ/σ), следовательно 2Ф(δ/σ) = 0,95, а значит Ф(δ/σ) = 0,475.

Используя приложение (таблица 2 ), находим δ/σ = 1,96. Отсюда δ = 1,96*σ = 1,96*0,2 = 0,392.
Искомый интервал : (20 – 0,392; 20 + 0,392) или (19,608; 20,392).

В различных отраслях науки и техники, а также метрологической практике закон нормального распределения (или просто нормальный закон) нашел наибольшее применение. Этому закону подчиняются многие случайные непрерывные величины. Широкое применение закона нормального распределения объясняется центральной предельной теоремой. Из этой теоремы следует, что если случайная величина X представляет собой сумму взаимно независимых случайных величин х р х 2 , ..., х, влияние каждой из которых на всю сумму незначительно, то независимо оттого, каким законам распределения подчиняется каждое из слагаемы х п, сама величина X будет иметь распределение вероятностей, близкое к нормальному, и тем точнее, чем больше число слагаемых.

Дифференциальная функция распределения или плотность распределения вероятности случайной непрерывной величины, подчиняющейся нормальному закону, имеет вид:

где х - переменная случайная величина (результат наблюдений); о х, а д - среднее квадратическое отклонение результатов наблюдений случайной составляющей их погрешности; т х - математическое

ожидание; в - основание натуральных логарифмов, е = 2, 71828.

Следует помнить, что о х = а д.

Дифференциальная функция нормального распределения графически выражается в виде колоколообразной кривой (кривая Гаусса), представленной на рис. 5.8.

Функция Ф(А) нормированного нормального распределения (интеграл Гаусса) в табличном виде представлена в приложении А.

Как видно на рис. 5.8, кривая нормального распределения случайной величины х результатов измерений симметрична относительно математического ожидания.

Если х - результаты многократных наблюдений одной и той же детерминированной физической величины, то указанная выше кривая симметрична относительно математического ожидания результатов этих наблюдений.

Как уже говорилось ранее, если в качестве случайной величины принята случайная погрешность А со средним квадратическим отклонением а д, эта кривая симметрична относительно оси ординат (рис. 5.9).

Положение кривой Р х (х) =/(х) относительно начала координат определяется значением математического ожидания. Причем обычно на практике берется не математическое ожидание, а среднее арифметическое результатов многократных наблюдений X.

Форма кривой нормального распределения определяется параметром а. Как было показано ранее, чем меньше а, тем более островершинной становится кривая, а ее ветви сближаются (см. рис. 5.4).

Вероятность попадания результата наблюдения в заданный интервал [х р х 2 ] равна площади под кривой нормального распределения, ограниченной нижней Xj и верхней х 7 границами доверительного интервала (рис. 5.10).

Выразим это математически:

Производя замену переменных и их подстановку, получим

В теории вероятностей и метрологии для определения вероятности попадания результата наблюдений в некоторый интервал применяется так называемая нормированная функция Лапласа Ф(Z) =

= которая табулирована. Условия нормирования

заключаются в том, что значение среднего арифметического результатов измерений X принимается равным нулю, а среднее квадратическое отклонение о = 1. В этом случае параметром является величина

Значения функции Лапласа приведены в приложении Б. Используя функцию Лапласа, можно следующим образом определить вероятность попадания результата наблюдения X в интервал (х, х 2):

Приведенное выражение говорит о том, что вероятность попадания результата наблюдения в заданный интервал [х р х-,] равна разнице значений функции Лапласа в точках верхней и нижней границ доверительного интервала.

При рассмотрении этой формулы следует иметь в виду, что O(-Z) = = -0(Z).

Моменты функции распределения случайной погрешности А, распределенной по нормальному закону:

Интегральная функция нормального распределения, представленная на рис. 5.11, выражается через дифференциальную следующим образом:


Правило трех сигм. На практике достаточно часто требуется оценить вероятность того, что отклонение нормально распределенной величины X по абсолютному значению не превышает определенный размер, который обычно принимается равным положительному числу 8.

Другими словами, требуется найти вероятность того, что осуществляется неравенство Х-а 5.

Это неравенство равносильно следующему: - Ь или (а-Ъ) +5).

Используя правило, что вероятность попадания нормально распределенной случайной величины в заданный интервал равна разнице значений функции Лапласа на границах этого интервала, т.е. Р(а (3) =

= ", получим

При а = 0 получим

Если положить, что 5 = За, получим

Таким образом, вероятность отклонения истинного значения случайной величины X по абсолютному значению будет меньше утроенного значения среднего квадратического отклонения. Это и есть правило трех сигм.

Формулируется оно следующим образом: если случайная величина распределена нормально, то абсолютное значение максимального отклонения результата измерения от математического ожидания не превосходит утроенного среднего квадратического отклонения.

Это правило применимо и следующим образом: если распределение случайной величины неизвестно, но условие, указанное в правиле трех сигм, соблюдается, то есть основание предполагать, что изучаемая случайная величина распределена нормально, в противном случае - нет.

Контрольные вопросы

  • 1. Дифференциальная функция распределения результатов измерений и случайной погрешности, подчиняющаяся нормальному закону. Аналитическая зависимость, графический вид, начальный и центральные моменты.
  • 2. Интегральная функция, соответствующая нормальному закону распределения.
  • 3. Правило трех сигм.