Фундаментальные взаимодействия и многообразие структур в микро-, макро- и мегамире. Структурные уровни организации материи Что такое мегамир в информатике

Краткое описание

Весь окружающий нас мир представляет собой движущуюся материю в её бесконечно разнообразных формах и проявлениях, со всеми её свойствами, связями и отношениями. Рассмотрим подробнее, что же такое материя, а так же ее структурные уровни. Материя – это бесконечное множество всех существующих в мире объектов и систем, субстрат любых свойств, связей, отношений и форм движения. В основе представлений о строении материального мира лежит системный подход, согласно которому любой объект материального мира, будь то атом, планета, организм или галактика, может быть рассмотрен как сложное образование, включающее в себя составные части, организованные в целостность.

Вложенные файлы: 1 файл

Кафедра экономики и естественнонаучных дисциплин

КОНТРОЛЬНАЯ РАБОТА

по дисциплине

Основы современного естествознания

Тема “Проблема взаимосвязи микро- и мега- миров”

Весь окружающий нас мир представляет собой движущуюся материю в её бесконечно разнообразных формах и проявлениях, со всеми её свойствами, связями и отношениями. Рассмотрим подробнее, что же такое материя, а так же ее структурные уровни.

Материя – это бесконечное множество всех существующих в мире объектов и систем, субстрат любых свойств, связей, отношений и форм движения. В основе представлений о строении материального мира лежит системный подход, согласно которому любой объект материального мира, будь то атом, планета, организм или галактика, может быть рассмотрен как сложное образование, включающее в себя составные части, организованные в целостность.

Современная наука выделяет в мире три структурных уровня.

Микромир – это молекулы, атомы, элементарные частицы - мир предельно малых, непосредственно не наблюдаемых микрообъектов, пространственная разномерность которых исчисляется от 10 -8 до 10 -16 см, а время жизни - от бесконечности до 10 -24 с.

Макромир - мир устойчивых форм и соразмерных человеку величин, а также кристаллические комплексы молекул, организмы, сообщества организмов; мир макрообъектов, размерность которых соотносима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время - в секундах, минутах, часах, годах.

Мегамир - это планеты, звездные комплексы, галактики, метагалактики – мир огромных космических масштабов и скоростей, расстояние в котором измеряется световыми годами, а время существования космических объектов - миллионами и миллиардами лет.

И хотя на этих уровнях действуют свои специфические закономерности, микро-, макро - и мегамиры теснейшим образом взаимосвязаны и существовать по отдельности не могут.

На микроскопическом уровне физика сегодня занимается изучением процессов, разыгрывающихся на длинах порядка 10 -18 см., за время - порядка 10 -22 с. В мегамире ученые с помощью приборов фиксируют объекты, удаленные от нас на расстоянии около 9-12 млрд. световых лет.

Микромир.

Демокритом в античности была выдвинута Атомистическая гипотеза строения материи. Благодаря трудам Дж. Дальтона стали изучаться физико-химические свойства атома. В XIX в. Д. И. Менделеев построил систему химических элементов, основанную на их атомном весе.

В физику представления об атомах как о последних неделимых структурных элементах материи пришли из химии. Собственно физические исследования атома начинаются в конце XIX в., когда французским физиком А. А. Беккерелем было открыто явление радиоактивности, которое заключалось в самопроизвольном превращении атомов одних элементов в атомы других элементов. В 1895 г. Дж. Томсон открыл электрон - отрицательно заряженную частицу, входящую в состав всех атомов. Поскольку электроны имеют отрицательный заряд, а атом в целом электрически нейтрален, то было сделано предположение о наличии помимо электрона и положительно заряженной частицы. Существовало несколько моделей строения атома.

Выявлены специфические качества микрообъектов, выражающиеся в наличии у них как корпускулярных (частицы), так и световых (волны) свойств. Элементарные частицы – простейшие объекты микромира, взаимодействующие как единое целое. Известно более 300 разновидностей. В первой половине ХХ в. были открыты фотон, протон, нейтрон, позднее – нейтрино, мезоны и другие. Основные характеристики элементарных частиц: масса, заряд, среднее время жизни, квантовые числа. Все элементарные частицы, абсолютно нейтральны, имеют свои античастицы - элементарные частицы, обладающие теми же характеристиками, но отличающиеся знаками электрического заряда. При столкновении частиц происходит их уничтожение (аннипиляция).

Стремительно возрастает количество открытых элементарных частиц. Их объединяют в «семейства» (мультиплеты), «роды» (супермультиплеты), «племена» (адроны, лептоны, фотоны и т.п.). Некоторые частицы группируются по принципу симметрии. Например, триплет из трёх частиц (кварков) и триплет из трёх античастиц (антикварков). К концу ХХ века физика приблизилась к созданию стройной теоретической системы, объясняющей свойства элементарных частиц. Предложены принципы, позволяющие дать теоретический анализ многообразия частиц, их взаимопревращений, построить единую теорию всех видов взаимодействий.

Мегамир или космос, современная наука рассматривает как взаимодействующую и развивающуюся систему всех небесных тел.

Все существующие галактики входят в систему самого высокого порядка - Метагалактику. Размеры Метагалактики очень велики: радиус космологического горизонта составляет 15- 20 млрд. световых лет. Понятия «Вселенная» и «Метагалактика» - очень близкие понятия: они характеризуют один и тот же объект, но в разных аспектах. Понятие «Вселенная» обозначает весь существующий материальный мир; понятие «Метагалактика» - тот же мир, но с точки зрения его структуры - как упорядоченную систему галактик.

Современные космологические модели Вселенной основываются на общей теории относительности А. Эйнштейна, согласно которой метрика пространства и времени определяется распределением гравитационных масс во Вселенной. Ее свойства как целого обусловлены средней плотностью материи и другими конкретно-физическими факторами. Время существования Вселенной бесконечно, т.ё. не имеет ни начала, ни конца, а пространство безгранично, но конечно.

В 1929 году американский астроном Э.П. Хаббл обнаружил существование странной зависимости между расстоянием и скоростью галактик: все галактики движутся от нас, причем со скоростью, которая возрастает пропорционально расстоянию, - система галактик расширяется. Расширение Вселенной считается научно установленным фактом. Согласно теоретическим расчетам Ж. Леметра, радиус Вселенной в первоначальном состоянии был 10 -12 см, что близко по размерам к радиусу электрона, а ее плотность составляла 10 96 г/см 3 . В сингулярном состоянии Вселенная представляла собой микрообъект ничтожно малых размеров. От первоначального сингулярного состояния Вселенная перешла к расширению в результате Большого взрыва.

Ретроспективные расчеты определяют возраст Вселенной в 13-20 млрд. лет. Г.А. Гамов предположил, что температура вещества была велика и падала с расширением Вселенной. Его расчеты показали, что Вселенная в своей эволюции проходит определенные этапы, в ходе которых происходит образование химических элементов и структур. В современной космологии для наглядности начальную стадию эволюцию Вселенной делят на “эры” :

Эра адронов. Тяжелые частицы, вступающие в сильные взаимодействия;

Эра лептонов. Легкие частицы, вступающие в электромагнитное взаимодействие;

Фотонная эра. Продолжительность 1 млн. лет. Основная доля массы - энергии Вселенной - приходится на фотоны;

Звездная эра. Наступает через 1 млн. лет после зарождения Вселенной. В звездную эру начинается процесс образования протозвезд и протогалактик.

Затем разворачивается грандиозная картина образования структуры Метагалактики.

Метагалактика – представляет собой совокупность звездных систем – галактик, а ее структура определяется их распределение в пространстве, заполненном чрезвычайно разреженным межгалактическим газом и пронизываемом межгалактическими лучами. Согласно современным представлениям, для метагалактики характерно ячеистая (сетчатая, пористая) структура. Возраст Метагалактики близок к возрасту Вселенной, поскольку образование структуры приходиться на период, следующий за разъединением вещества и излучение. По современным данным, возраст Метагалактики оценивается в 15 млрд. лет.

Галактика – гигантская система, состоящая из скоплений звезд и туманностей, образующих в пространстве достаточно сложную конфигурацию.

По форме галактики условно распределяются на три типа: эллиптические, спиральные, неправильные.

Солнечная система представляет собой группу небесных тел, весьма различных по размерам и физическому строению. В эту группу входят: Солнце, девять больших планет, десятки спутников планет, тысячи малых планет (астероидов), сотни комет и бесчисленное множество метеоритных тел, движущихся как роями, так и в виде отдельных частиц. Все эти тела объединены в одну систему благодаря силе притяжения центрального тела - Солнца. Солнечная система является упорядоченной системой, имеющей свои закономерности строения. Единый характер Солнечной системы проявляется в том, что все планеты вращаются вокруг Солнца в одном и том же направлении и почти в одной и той же плоскости. Солнце, планеты, спутники планет вращаются вокруг своих осей в том же направлении, в котором они совершают движение по своим траекториям. Закономерно и строение Солнечной системы: каждая следующая планета удалена от Солнца примерно в два раза дальше, чем предыдущая.

Заключение.

Список использованной литературы

1. Карпенков С.Х. Концепции современного естествознания. М.: 1997

2. Кудрявцев П.С. Курс истории физики. - М.: Просвещение, 1974. - С.

3. Учебное пособие «Концепции современного естествознания»

Микромир - это молекулы, атомы, элементарные частицы - мир предельно малых, непосредственно не наблюдаемых микрообъектов, пространственная разномерность которых исчисляется от 10-8 до 10-16 см, а время жизни - от бесконечности до 10-24 с.

Макромир - мир устойчивых форм и соразмерных человеку величин, а также кристаллические комплексы молекул, организмы, сообщества организмов; мир макрообъектов, размерность которых соотносима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время - в секундах, минутах, часах, годах.

Мегамир - это планеты, звездные комплексы, галактики, метагалактики - мир огромных космических масштабов и скоростей, расстояние в котором измеряется световыми годами, а время существования космических объектов - миллионами и миллиардами лет.

И хотя на этих уровнях действуют свои специфические закономерности, микро- , макро- и мегамиры теснейшим образом взаимосвязаны.

Понятно, что границы микро - и макромира подвижны, и не существует отдельного микромира и отдельного макромира. Естественно, что макрообъекты и мегаобъекты, построены из микрообъектов и в основе макро - и мегаявлений лежат микроявления. Это наглядно видно на примере построения Вселенной из взаимодействующих элементарных частиц в рамках космомикрофизики. На самом деле мы должны понимать, что речь идет лишь о различных уровнях рассмотрения вещества. Микро-, макро - и мегаразмеры объектов соотносятся друг с другом как макро/микро~ мега/макро.

В классической физике отсутствовал объективный критерий отличия макро - от микрообъекта. Это отличие ввел М. Планк: если для рассматриваемого объекта минимальным воздействием на него можно пренебречь, то это макрообъекты, если нельзя - это микрообъекты. Из протонов и нейтронов образуются ядра атомов. Атомы объединяются в молекулы. Если двигаться дальше по шкале размеров тел, то далее следует обычные макротела, планеты и их системы, звезды скопления галактик и метагалактик, то есть можно представить переход от микро-, макро - и мега - как в размерах, так и моделях физических процессов.

Микромир

Демокритом в античности была выдвинута Атомистическая гипотеза строения материи, позже, в XVIII в. была возрождена химиком Дж. Дальтоном, который принял атомный вес водорода за единицу и сопоставил с ним атомные веса других газов. Благодаря трудам Дж. Дальтона стали изучаться физико-химические свойства атома. В XIX в.Д.И. Менделеев построил систему химических элементов, основанную на их атомном весе.

История исследования строения атома началась в 1895 г. благодаря открытию Дж. Томсоном электрона - отрицательно заряженной частицы, входящей в состав всех атомов. Поскольку электроны имеют отрицательный заряд, а атом в целом электрически нейтрален, то было сделано предположение о наличии помимо электрона и положительно заряженной частицы. Масса электрона составила по расчетам 1/1836 массы положительно заряженной частицы.

Ядро имеет положительный заряд, а электроны - отрицательный. Вместо сил тяготения, действующих в Солнечной системе, в атоме действуют электрические силы. Электрический заряд ядра атома, численно равный порядковому номеру в периодической системе Менделеева, уравновешивается суммой зарядов электронов - атом электрически нейтрален.

Обе эти модели оказались противоречивы.

В 1913 г. великий датский физик Н. Бор применил принцип квантования при решении вопроса о строении атома и характеристике атомных спектров.

Модель атома Н. Бора базировалась на планетарной модели Э. Резерфорда и на разработанной им самим квантовой теории строения атома. Н. Бор выдвинул гипотезу строения атома, основанную на двух постулатах, совершенно несовместимых с классической физикой:

1) в каждом атоме существует несколько стационарных состояний (говоря языком планетарной модели, несколько стационарных орбит) электронов, двигаясь по которым электрон может существовать, не излучая;

2) при переходе электрона из одного стационарного состояния в другое атом излучает или поглощает порцию энергии.

В конечном итоге точно описать структуру атома на основании представления об орбитах точечных электронов принципиально невозможно, поскольку таких орбит в действительности не существует.

Теория Н. Бора представляет собой как бы пограничную полосу первого этапа развития современной физики. Это последнее усилие описать структуру атома на основе классической физики, дополняя ее лишь небольшим числом новых предположений.

Создавалось впечатление, что постулаты Н. Бора отражают какие-то новые, неизвестные свойства материи, но лишь частично. Ответы на эти вопросы были получены в результате развития квантовой механики. Выяснилось, что атомную модель Н. Бора не следует понимать буквально, как это было вначале. Процессы в атоме в принципе нельзя наглядно представить в виде механических моделей по аналогии с событиями в макромире. Даже понятия пространства и времени в существующей в макромире форме оказались неподходящими для описания микрофизических явлений. Атом физиков-теоретиков все больше и больше становился абстрактно-ненаблюдаемой суммой уравнений.

Академия

Контрольная работа

по дисциплине «КСЕ»

на тему: «Фундаментальные взаимодействия и многообразие структур в микро-, макро- и мегамире»

Введение. 3

Глава I. Материя. 5

Глава II. Структурные уровни организации материи. 7

Микро, макро, мега миры… 7

2.1 Микромир. 8

2.2 Макромир. 10

2.3 Мегамир. 13

Заключение. 21

Список использованной литературы… 22

Введение

Естественные науки, начав изучение материального мира с наиболее простых непосредственно воспринимаемых человеком материальных объектов, переходят далее к изучению сложнейших объектов глубинных структур материи, выходящих за пределы человеческого восприятия и несоизмеримых с объектами повседневного опыта. Применяя системный подход, естествознание не просто выделяет типы материальных систем, а раскрывает их связь и соотношение.

В науке выделяются три уровня строения материи:

Микромир (элементарные частицы, ядра, атомы, молекулы) - мир предельно малых, непосредственно не наблюдаемых микрообъектов, пространственная разномерность которых исчисляется от десяти в минус восьмой степени до десяти в минус шестнадцатой степени см, а время жизни - от бесконечности до десяти в минус двадцать четвертой степени сек.

Макромир (макромолекулы, живые организмы, человек, объекты техники и т.д.) - мир макрообъектов, размерность которых соотносима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время - в секундах, минутах, часах, годах.

Мегамир (планеты, звезды, галактика) - мир огромных космических масштабов и скоростей, расстояние в котором измеряется световыми годами, а время существования космических объектов - миллионами и миллиардами лет.

Фундаментальные мировые константы определяют масштабы иерархической структуры материи нашего мира. Очевидно, что сравнительно небольшое их изменение и должно приводить к формированию качественно иного мира, в котором стало бы невозможным образование ныне существующих микро-, макро - и мегаструктур и в целом высоко-организованных форм живой материи. Определенные их значения и взаимоотношения между ними, по существу, и обеспечивает структурную устойчивость нашей Вселенной. Поэтому проблема, казалось бы, абстрактных мировых констант имеет глобальное мировоззренческое значение.

Глава I. Материя

Материя – это бесконечное множество всех существующих в мире объектов и систем, субстрат любых свойств, связей, отношений и форм движения. Материя включает в себя не только все непосредственно наблюдаемые объекты и тела природы, но и все те, которые в принципе могут быть познаны в будущем на основе совершенствования средств наблюдения и эксперимента.

В основе представлений о строении материального мира лежит системный подход, согласно которому любой объект материального мира, будь то атом, планета, организм или галактика, может быть рассмотрен как сложное образование, включающее в себя составные части, организованные в целостность. Для обозначения целостности объектов в науке было выработано понятие системы.

Материя как объективная реальность включает в себя не только вещество в четырех его агрегатных состояниях (твердом, жидком, газообразном, плазменном), но и физические поля (электромагнитное, гравитационное, ядерное и т.д.), а также их свойства, отношения, продукты взаимодействия. Входит в нее и антивещество (совокупность античастиц: позитрон, или антиэлектрон, антипротон, антинейтрон), недавно открытое наукой. Антивещество ни в коем случае не антиматерия. Антиматерии вообще быть не может.

Движение и материя органически и нерасторжимо связаны друг с другом: нет движения без материи, как нет и материи без движения. Иначе говоря, нет в мире неизменных вещей, свойств и отношений. Одни формы или виды сменяются другими, переходят в другие – движение постоянно. Покой – диалектически исчезающий момент в беспрерывном процессе изменения, становления. Абсолютный покой равнозначен смерти, а вернее – несуществованию. И движение, и покой с определенностью фиксируются лишь по отношению к какой-то системе отсчета.

Движущаяся материя существует в двух основных формах – в пространстве и во времени. Понятие пространства служит для выражения свойства протяженности и порядка сосуществования материальных систем и их состояний. Оно объективно, универсально и необходимо. В понятии времени фиксируется длительность и последовательность смены состояний материальных систем. Время объективно, неотвратимо и необратимо

Основоположником взгляда на материю, как состоящую из дискретных частиц был Демокрит.

Демокрит отрицал бесконечную делимость материи. Атомы различаются между собой только формой, порядком взаимного следования, и положением в пустом пространстве, а также величиной и зависящей от величины тяжестью. Они имеют бесконечно разнообразные формы с впадинами или выпуклостями. В современной науке много спорили о том, являются ли атомы Демокрита физическими или геометрическими телами, однако сам Демокрит еще не дошел до различения физики и геометрии. Из этих атомов, движущихся в различных направлениях, из их «вихря» по естественной необходимости путем сближения взаимноподобных атомов образуются как отдельные целые тела, так и весь мир; движение атомов вечно, а число возникающих миров бесконечно.

Мир доступной человеку объективной реальности постоянно расширяется. Концептуальные формы выражения идеи структурных уровней материи многообразны.

Современная наука выделяет в мире три структурных уровня.

Глава II. Структурные уровни организации материи.

Микро, макро, мега миры

Микромир – это молекулы, атомы, элементарные частицы - мир предельно малых, непосредственно не наблюдаемых микрообъектов, пространственная разномерность которых исчисляется от 10-8 до 10-16 см, а время жизни - от бесконечности до 10-24 с.

Макромир - мир устойчивых форм и соразмерных человеку величин, а также кристаллические комплексы молекул, организмы, сообщества организмов; мир макрообъектов, размерность которых соотносима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время - в секундах, минутах, часах, годах.

Мегамир - это планеты, звездные комплексы, галактики, метагалактики – мир огромных космических масштабов и скоростей, расстояние в котором измеряется световыми годами, а время существования космических объектов - миллионами и миллиардами лет.

И хотя на этих уровнях действуют свои специфические закономерности, микро-, макро- и мегамиры теснейшим образом взаимосвязаны.

Понятно, что границы микро - и макромира подвижны, и не существует отдельного микромира и отдельного макромира. Естественно, что макрообъекты и мегаобъекты, построены из микрообъектов и в основе макро - и мегаявлений лежат микроявления. Это наглядно видно на примере построения Вселенной из взаимодействующих элементарных частиц в рамках космомикрофизики. На самом деле мы должны понимать, что речь идет лишь о различных уровнях рассмотрения вещества. Микро-, макро - и мегаразмеры объектов соотносятся друг с другом как макро/микро~ мега/макро.

В классической физике отсутствовал объективный критерий отличия макро - от микрообъекта. Это отличие ввел М. Планк: если для рассматриваемого объекта минимальным воздействием на него можно пренебречь, то это макрообъекты, если нельзя – это микрообъекты. Из протонов и нейтронов образуются ядра атомов. Атомы объединяются в молекулы. Если двигаться дальше по шкале размеров тел, то далее следует обычные макротела, планеты и их системы, звезды скопления галактик и метагалактик, то есть можно представить переход от микро-, макро - и мега - как в размерах, так и моделях физических процессов.

2.1 Микромир

Демокритом в античности была выдвинута Атомистическая гипотеза строения материи, позже, в XVIII в. была возрождена химиком Дж. Дальтоном, который принял атомный вес водорода за единицу и сопоставил с ним атомные веса других газов. Благодаря трудам Дж. Дальтона стали изучаться физико-химические свойства атома. В XIX в.Д.И. Менделеев построил систему химических элементов, основанную на их атомном весе.

История исследования строения атома началась в 1895 г. благодаря открытию Дж. Томсоном электрона - отрицательно заряженной частицы, входящей в состав всех атомов. Поскольку электроны имеют отрицательный заряд, а атом в целом электрически нейтрален, то было сделано предположение о наличии помимо электрона и положительно заряженной частицы. Масса электрона составила по расчетам 1/1836 массы положительно заряженной частицы.

Ядро имеет положительный заряд, а электроны - отрицательный. Вместо сил тяготения, действующих в Солнечной системе, в атоме действуют электрические силы. Электрический заряд ядра атома, численно равный порядковому номеру в периодической системе Менделеева, уравновешивается суммой зарядов электронов - атом электрически нейтрален.

Обе эти модели оказались противоречивы.

В 1913 г. великий датский физик Н. Бор применил принцип квантования при решении вопроса о строении атома и характеристике атомных спектров.

Модель атома Н. Бора базировалась на планетарной модели Э. Резерфорда и на разработанной им самим квантовой теории строения атома. Н. Бор выдвинул гипотезу строения атома, основанную на двух постулатах, совершенно несовместимых с классической физикой:

1) в каждом атоме существует несколько стационарных состояний (говоря языком планетарной модели, несколько стационарных орбит) электронов, двигаясь по которым электрон может существовать, не излучая;

2) при переходе электрона из одного стационарного состояния в другое атом излучает или поглощает порцию энергии.

В конечном итоге точно описать структуру атома на основании представления об орбитах точечных электронов принципиально невозможно, поскольку таких орбит в действительности не существует.

Теория Н. Бора представляет собой как бы пограничную полосу первого этапа развития современной физики. Это последнее усилие описать структуру атома на основе классической физики, дополняя ее лишь небольшим числом новых предположений.

Создавалось впечатление, что постулаты Н. Бора отражают какие-то новые, неизвестные свойства материи, но лишь частично. Ответы на эти вопросы были получены в результате развития квантовой механики. Выяснилось, что атомную модель Н. Бора не следует понимать буквально, как это было вначале. Процессы в атоме в принципе нельзя наглядно представить в виде механических моделей по аналогии с событиями в макромире. Даже понятия пространства и времени в существующей в макромире форме оказались неподходящими для описания микрофизических явлений. Атом физиков-теоретиков все больше и больше становился абстрактно-ненаблюдаемой суммой уравнений.

2.2 Макромир

В истории изучения природы можно выделить два этапа: донаучный и научный.

Донаучный, или натурфилософский, охватывает период от античности до становления экспериментального естествознания в XVI-XVII вв. Наблюдаемые природные явления объяснялись на основе умозрительных философских принципов.

Наиболее значимой для последующего развития естественных наук была концепция дискретного строения материи атомизм, согласно которому все тела состоят из атомов - мельчайших в мире частиц.

Со становления классической механики начинается научный этап изучения природы.

Поскольку современные научные представления о структурных уровнях организации материи были выработаны в ходе критического переосмысления представлений классической науки, применимых только к объектам макроуровня, то начинать нужно с концепций классической физики.

Формирование научных взглядов на строение материи относится к XVI в., когда Г. Галилеем была заложена основа первой в истории науки физической картины мира - механической. Он открыл закон инерции, и разработал методологию нового способа описания природы - научно-теоретического. Суть его заключалась в том, что выделялись только некоторые физические и геометрические характеристики, которые становились предметом научного исследования.

И. Ньютон, опираясь на труды Галилея, разработал строгую научную теорию механики, описывающую и движение небесных тел, и движение земных объектов одними и теми же законами. Природа рассматривалась как сложная механическая система.

В рамках механической картины мира, разработанной И. Ньютоном и его последователями, сложилась дискретная (корпускулярная) модель реальности. Материя рассматривалась как вещественная субстанция, состоящая из отдельных частиц - атомов или корпускул. Атомы абсолютно прочны, неделимы, непроницаемы, характеризуются наличием массы и веса.

Существенной характеристикой ньютоновского мира было трехмерное пространство евклидовой геометрии, которое абсолютно постоянно и всегда пребывает в покое. Время представлялось как величина, не зависящая ни от пространства, ни от материи.

Движение рассматривалось как перемещение в пространстве по непрерывным траекториям в соответствии с законами механики.

Итогом ньютоновской картины мира явился образ Вселенной как гигантского и полностью детерминированного механизма, где события и процессы являют собой цепь взаимозависимых причин и следствий.

Механистический подход к описанию природы оказался необычайно плодотворным. Вслед за ньютоновской механикой были созданы гидродинамика, теория упругости, механическая теория тепла, молекулярно-кинетическая теория и целый ряд других, в русле которых физика достигла огромных успехов. Однако были две области - оптических и электромагнитных явлений, которые не могли быть полностью объяснены в рамках механистической картины мира.

Наряду с механической корпускулярной теорией, осуществлялись попытки объяснить оптические явления принципиально иным путем, а именно - на основе волновой теории. Волновая теория устанавливала аналогию между распространением света и движением волн на поверхности воды или звуковых волн в воздухе. В ней предполагалось наличие упругой среды, заполняющей все пространство, - светоносного эфира. Исходя из волновой теории X. Гюйгенс успешно объяснил отражение и преломление света.

Другой областью физики, где механические модели оказались неадекватными, была область электромагнитных явлений. Эксперименты английского естествоиспытателя М. Фарадея и теоретические работы английского физика Дж. К. Максвелла окончательно разрушили представления ньютоновской физики о дискретном веществе как единственном виде материи и положили начало электромагнитной картине мира.

Явление электромагнетизма открыл датский естествоиспытатель X.К. Эрстед, который впервые заметил магнитное действие электрических токов. Продолжая исследования в этом направлении, М. Фарадей обнаружил, что временное изменение в магнитных полях создает электрический ток.

М. Фарадей пришел к выводу, что учение об электричестве и оптика взаимосвязаны и образуют единую область. Максвелл «перевел» модель силовых линий Фарадея в математическую формулу. Понятие «поле сил» первоначально складывалось как вспомогательное математическое понятие. Дж. К. Максвелл придал ему физический смысл и стал рассматривать поле как самостоятельную физическую реальность: «Электромагнитное поле - это та часть пространства, которая содержит в себе и окружает тела, находящиеся в электрическом или магнитном состоянии»

Исходя из своих исследований, Максвелл смог заключить, что световые волны представляют собой электромагнитные волны. Единая сущность света и электричества, которую М. Фарадей предположил в 1845 г., а Дж.К. Максвелл теоретически обосновал в 1862 г., была экспериментально подтверждена немецким физиком Г. Герцем в 1888 г.

После экспериментов Г. Герца в физике окончательно утвердилось понятие поля не в качестве вспомогательной математической конструкции, а как объективно существующей физической реальности. Был открыт качественно новый, своеобразный вид материи.

Итак, к концу XIX в. физика пришла к выводу, что материя существует в двух видах: дискретного вещества и непрерывного поля.

В результате же последующих революционных открытий в физике в конце прошлого и начале нынешнего столетий оказались разрушенными представления классической физики о веществе и поле как двух качественно своеобразных видах материи.

2.3 Мегамир

Мегамир или космос, современная наука рассматривает как взаимодействующую и развивающуюся систему всех небесных тел.

Все существующие галактики входят в систему самого высокого порядка - Метагалактику. Размеры Метагалактики очень велики: радиус космологического горизонта составляет 15 - 20 млрд. световых лет.

Понятия «Вселенная» и «Метагалактика» - очень близкие понятия: они характеризуют один и тот же объект, но в разных аспектах. Понятие «Вселенная» обозначает весь существующий материальный мир; понятие «Метагалактика» - тот же мир, но с точки зрения его структуры - как упорядоченную систему галактик.

Строение и эволюция Вселенной изучаются космологией. Космология как раздел естествознания, находится на своеобразном стыке науки, религии и философии. В основе космологических моделей Вселенной лежат определенные мировоззренческие предпосылки, а сами эти модели имеют большое мировоззренческое значение.

В классической науке существовала так называемая теория стационарного состояния Вселенной, согласно которой Вселенная всегда была почти такой же, как сейчас. Астрономия была статичной: изучались движения планет и комет, описывались звезды, создавались их классификации, что было, конечно, очень важно. Но вопрос об эволюции Вселенной не ставился.

Современные космологические модели Вселенной основываются на общей теории относительности А. Эйнштейна, согласно которой метрика пространства и времени определяется распределением гравитационных масс во Вселенной. Ее свойства как целого обусловлены средней плотностью материи и другими конкретно-физическими факторами.

Уравнение тяготения Эйнштейна имеет не одно, а множество решений, чем и обусловлено наличие многих космологических моделей Вселенной.

Первая модель была разработана самим А. Эйнштейном в 1917 г. Он отбросил постулаты ньютоновской космологии об абсолютности и бесконечности пространства и времени. В соответствии с космологической моделью Вселенной А. Эйнштейна мировое пространство однородно и изотропно, материя в среднем распределена в ней равномерно, гравитационное притяжение масс компенсируется универсальным космологическим отталкиванием.

Время существования Вселенной бесконечно, т. ё. не имеет ни начала, ни конца, а пространство безгранично, но конечно.

Вселенная в космологической модели А. Эйнштейна стационарна, бесконечна во времени и безгранична в пространстве.

В 1922г. русский математик и геофизик А. А Фридман отбросил постулат классической космологии о стационарности Вселенной и получил решение уравнения Эйнштейна, описывающее Вселенную с “расширяющимся” пространством.

Поскольку средняя плотность вещества во Вселенной неизвестна, то сегодня мы не знаем, в каком из этих пространств Вселенной мы живем.

В 1927 г. бельгийский аббат и ученый Ж. Леметр связал “расширение” пространства с данными астрономических наблюдений. Леметр ввел понятие начала Вселенной как сингулярности (т.е. сверхплотного состояния) и рождения Вселенной как Большого взрыва.

Расширение Вселенной считается научно установленным фактом. Согласно теоретическим расчетам Ж. Леметра, радиус Вселенной в первоначальном состоянии был 10-12 см, что близко по размерам к радиусу электрона, а ее плотность составляла 1096 г/см3. В сингулярном состоянии Вселенная представляла собой микрообъект ничтожно малых размеров. От первоначального сингулярного состояния Вселенная перешла к расширению в результате Большого взрыва.

Ретроспективные расчеты определяют возраст Вселенной в 13-20 млрд. лет. В современной космологии для наглядности начальную стадию эволюцию Вселенной делят на “эры”

Эра адронов. Тяжелые частицы, вступающие в сильные взаимодействия.

Эра лептонов. Легкие частицы, вступающие в электромагнитное взаимодействие.

Фотонная эра. Продолжительность 1 млн. лет. Основная доля массы - энергии Вселенной - приходится на фотоны.

Звездная эра. Наступает через 1 млн. лет после зарождения Вселенной. В звездную эру начинается процесс образования протозвезд и протогалактик. Затем разворачивается грандиозная картина образования структуры Метагалактики.

В современной космологии наряду с гипотезой Большого взрыва весьма популярна инфляционная модель Вселенной, в которой рассматривается творение Вселенной.

Сторонники инфляционной модели видят соответствие между этапами космической эволюции и этапами творения мира, описанными в книге Бытия в Библии.

В соответствии с инфляционной гипотезой космическая эволюция в ранней Вселенной проходит ряд этапов.

Стадия инфляции. В результате квантового скачка Вселенная перешла в состояние возбужденного вакуума и в отсутствие в ней вещества и излучения интенсивно расширялась по экспоненциальному закону. В этот период создавалось само пространство и время Вселенной. Вселенная раздулась от невообразимо малых квантовых размеров 10-33 до невообразимо больших 101000000см, что на много порядков превосходит размер наблюдаемой Вселенной - 1028 см. Весь этот первоначальный период во Вселенной не было ни вещества, ни излучения.

Переход от инфляционной стадии к фотонной. Состояние ложного вакуума распалось, высвободившаяся энергия пошла на рождение тяжелых частиц и античастиц, которые, проаннигилировав, дали мощную вспышку излучения (света), осветившего космос.

В дальнейшем развитие Вселенной шло в направлении от максимально простого однородного состояния к созданию все более сложных структур - атомов (первоначально атомов водорода), галактик, звезд, планет, синтезу тяжелых элементов в недрах звезд, в том числе и необходимых для создания жизни, возникновению жизни и как венца творения - человека.

Различие между этапами эволюции Вселенной в инфляционной модели и модели Большого взрыва касается только первоначального этапа порядка 10-30 с, далее между этими моделями принципиальных расхождений в понимании этапов космической эволюции нет.

Вселенной на самых разных уровнях, от условно элементарных частиц и до гигантских сверхскоплений галактик, присуща структурность. Современная структура Вселенной является результатом космической эволюции, в ходе которой из протогалактик образовались галактики, из протозвезд – звезды, из протопланетного облака – планеты.

Метагалактика – представляет собой совокупность звездных систем – галактик, а ее структура определяется их распределение в пространстве, заполненном чрезвычайно разреженным межгалактическим газом и пронизываемом межгалактическими лучами.

Согласно современным представлениям, для метагалактики характерно ячеистая (сетчатая, пористая) структура. Существуют огромные объемы пространства (порядка миллиона кубических мегапарсек), в которых галактик пока не обнаружено.

Возраст Метагалактики близок к возрасту Вселенной, поскольку образование структуры приходиться на период, следующий за разъединением вещества и излучение. По современным данным, возраст Метагалактики оценивается в 15 млрд. лет.

Галактика – гигантская система, состоящая из скоплений звезд и туманностей, образующих в пространстве достаточно сложную конфигурацию.

По форме галактики условно распределяются на три типа: эллиптические, спиральные, неправильные.

Эллиптические галактики – обладают пространственной формой эллипсоида с разной степенью сжатия они являются наиболее простыми по структуре: распределение звезд равномерно убывает от центра.

Спиральные галактики – представлены в форме спирали, включая спиральные ветви. Это самый многочисленный вид галактик, к которому относится и наша Галактика – млечный путь.

Неправильные галактики – не обладают выраженной формой, в них отсутствует центральное ядро.

В ядре галактики сосредоточенны самые старые звезды, возраст которых приближается к возрасту галактики. Звезды среднего и молодого возраста расположены в диске галактики.

Звезды и туманности в пределах галактики движутся довольно сложным образом вместе с галактикой они принимают участие в расширении Вселенной, кроме того, они участвуют во вращении галактики вокруг оси.

Звезды. На современном этапе эволюции Вселенной вещество в ней находится преимущественно в звездном состоянии.97% вещества в нашей Галактике сосредоточено в звездах, представляющих собой гигантские плазменные образования различной величины, температуры, с разной характеристикой движения. У многих других галактик, если не у большинства, «звездная субстанция» составляет более чем 99,9% их массы.

Возраст звезд меняется в достаточно большом диапазоне значений: от 15 млрд. лет, соответствующих возрасту Вселенной, до сотен тысяч - самых молодых.

Рождение звезд происходит в газово-пылевых туманностях под действием гравитационных, магнитных и других сил, благодаря которым идет формирование неустойчивых однородностей и диффузная материя распадается на ряд сгущений. Если такие сгущения сохраняются достаточно долго, то с течением времени они превращаются в звезды.

На завершающем этапе эволюции звезды превращаются в инертные («мертвые») звезды.

Звезды не существуют изолированно, а образуют системы. Простейшие звездные системы - так называемые кратные системы состоят из двух, трех, четырех, пяти и больше звезд, обращающихся вокруг общего центра тяжести.

Звезды объединены также в еще большие группы - звездные скопления, которые могут иметь «рассеянную» или «шаровую» структуру. Рассеянные звездные скопления насчитывают несколько сотен отдельных звезд, шаровые скопления - многие сотни тысяч.

Солнечная система представляет собой группу небесных тел, весьма различных по размерам и физическому строению. В эту группу входят: Солнце, девять больших планет, десятки спутников планет, тысячи малых планет (астероидов), сотни комет и бесчисленное множество метеоритных тел, движущихся как роями, так и в виде отдельных частиц.

К 1979 г. было известно 34 спутника и 2000 астероидов. Все эти тела объединены в одну систему благодаря силе притяжения центрального тела - Солнца. Солнечная система является упорядоченной системой, имеющей свои закономерности строения. Единый характер Солнечной системы проявляется в том, что все планеты вращаются вокруг Солнца в одном и том же направлении и почти в одной и той же плоскости. Большинство спутников планет вращается в том же направлении и в большинстве случаев в экваториальной плоскости своей планеты. Солнце, планеты, спутники планет вращаются вокруг своих осей в том же направлении, в котором они совершают движение по своим траекториям. Закономерно и строение Солнечной системы: каждая следующая планета удалена от Солнца примерно в два раза дальше, чем предыдущая.

Солнечная система образовалась примерно 5 млрд. лет назад, причем Солнце - звезда второго поколения. Таким образом, Солнечная система возникла на продуктах жизнедеятельности звезд предыдущих поколений, скапливавшихся в газово-пылевых облаках. Это обстоятельство дает основание назвать Солнечную систему малой частью звездной пыли. О происхождении Солнечной системы и ее исторической эволюции наука знает меньше, чем необходимо для построения теории планетообразования.

Современные концепции происхождения планет Солнечной системы основываются на том, что нужно учитывать не только механические силы, но и другие, в частности электромагнитные. Эта идея была выдвинута шведским физиком и астрофизиком X. Альфвеном и английским астрофизиком Ф. Хойлом. В соответствии с современными представлениями, первоначальное газовое облако, из которого образовались и Солнце и планеты, состояло из ионизированного газа, подверженного влиянию электромагнитных сил. После того как из огромного газового облака посредством концентрации образовалось Солнце, на очень большом расстоянии от него остались небольшие части этого облака. Гравитационная сила стала притягивать остатки газа к образовавшейся звезде - Солнцу, но его магнитное поле остановило падающий газ а различных расстояниях - как раз там, где находятся планеты. Гравитационная и магнитные силы повлияли на концентрацию и сгущение падающего газа, и в результате образовались планеты. Когда возникли самые крупные планеты, тот же процесс повторился в меньших масштабах, создав, таким образом, системы спутников.

Теории происхождения Солнечной системы носят гипотетический характер, и однозначно решить вопрос об их достоверности на современном этапе развития науки невозможно. Во всех существующих теориях имеются противоречия и неясные места.

В настоящее время в области фундаментальной теоретической физики разрабатываются концепции, согласно которым объективно существующий мир не исчерпывается материальным миром, воспринимаемым нашими органами чувств или физическими приборами. Авторы данных концепций пришли к следующему выводу: наряду с материальным миром существует реальность высшего порядка, обладающая принципиально иной природой по сравнению с реальностью материального мира.

Заключение

Издавна люди пытались найти объяснение многообразию и причудливости мира.

Изучение материи и её структурных уровней является необходимым условием формирования мировоззрения, независимо от того, окажется ли оно в конечном счёте материалистическим или идеалистическим.

Достаточно очевидно, что очень важна роль определения понятия материи, понимания последней как неисчерпаемой для построения научной картины мира, решения проблемы реальности и познаваемости объектов и явлений микро, макро и мега миров.

Все вышеизложенные революционные открытия в физике перевернули ранее существующие взгляды на мир. Исчезла убежденность в универсальности законов классической механики, ибо разрушились прежние представления о неделимости атома, о постоянстве массы, о неизменности химических элементов и т.д. Теперь уже вряд ли можно найти физика, который считал бы, что все проблемы его науки можно решить с помощью механических понятий и уравнений.

Рождение и развитие атомной физики, таким образом, окончательно сокрушило прежнюю механистическую картину мира. Но классическая механика Ньютона при этом не исчезла. По сей день она занимает почетное место среди других естественных наук. С ее помощью, например, рассчитывается движение искусственных спутников Земли, других космических объектов и т.д. Но трактуется она теперь как частный, случай квантовой механики, применимый для медленных движений и больших масс объектов макромира.

Список использованной литературы

1. Горелов А.А. Концепции современного естествознания. – М.: Центр, 1998. – 208с.

2. Горбачев В.В. Концепции современного естествознания: Учеб. пособ. для студентов вузов. – М., 2005. – 672 с.

3. Карпенков С.Х. Концепции современного естествознания - М.: 1997.

4. Квасова И.И. Учебное пособие по курсу «Введение в философию».М., 1990.

5. Лавриенко В.Н. Концепции современного естествознания - М.: ЮНИТИ. 1997 г.


Авторы:

ученица 9 класса «А»,

Афанасьева Ирина,

ученица 9 класса «А»,

Татаринцева Анастасия

ученик 11 класса «А»,

Таразанов Артемий;

Научные руководители:

учитель информатики и ИКТ,

Абродин Александр Владимирович

учитель физики,

Шамрина Наталья Максимовна

Микро-, макро- и мега - миры. 4

Микромир. 5

Макромир. 6

Мегамир. 8

СОБСТВЕННЫЕ ИССЛЕДОВАНИЯ. 10

Проблема взаимодействия мега-, макро- и микромира. 10

Большое и малое. 12

Большое и малое в других науках. 14

ПРАКТИЧЕСКАЯ ЧАСТЬ. 18

Метапредметное учебное занятие "Большое и малое» с использованием интерактивной доски. 18

Заключение 20

Список литературы 21

Приложение 1. 22

Приложение 2. 23

Приложение 3. 25






Введение.

Блез Паскаль
Область исследования. Вселенная - вечная загадка. Издавна люди пытались найти объяснение многообразию и причудливости мира. Естественные науки, начав изучение материального мира, с наиболее простых материальных объектов, переходят к изучению сложнейших объектов глубинных структур материи, выходящих за пределы человеческого восприятия и несоизмеримых с объектами повседневного опыта.

Объект исследования . В середине XX века американский астроном Харлоу Шепли предложил интересную пропорцию:

Здесь человек является как бы средним геометрическим между звёздами и атомами. Мы решили рассмотреть этот вопрос с точки зрения физики.

Предмет исследования . В науке выделяют три уровня строения материи: микромир, макромир и мегамир. Определенные их значения и взаимоотношения между ними, по существу, обеспечивают структурную устойчивость нашей Вселенной.

Поэтому проблема, казалось бы, абстрактных мировых констант имеет глобальное мировоззренческое значение. В этом заключается актуальность нашей работы.

Цель проекта : исследовать микро-, макро- и мега миры, найти их особенности и связь.

Задачи проекта формировались следующим образом:


  • изучить и проанализировать теоретический материал;

  • исследовать законы, которым подчиняются большие и малые объекты в физике;

  • проследить связь большого и малого в других науках;

  • написать программу «Большое и малое» для метапредметного учебного занятия ;

  • собрать коллекцию фотографий, в которых прослеживается симметрия микро-, макро-, и мегамиров;

  • составить буклет «Микро-, макро- и мега- миры».

В начале исследования нами была выдвинута гипотеза , что в природе есть симметрия.

Основными методами проекта стала работа с научно-популярной литературой, сравнительный анализ полученной информации, отбор и обобщение информации, популяризация знаний по данной теме.

Экспериментальное оборудование : интерактивная доска.

Работа состоит из введения, теоретической и практической частей, заключения, списка литературы и трех приложений. Объём проектной работы – 20 страниц (без приложений).






ТЕОРЕТИЧЕСКАЯ ЧАСТЬ.

Наука начинается там, где начинают измерять.

Д.И. Менделеев

Микро-, макро- и мега - миры.

Перед началом исследования мы решили изучить теоретический материал, чтобы определить особенности микро, макро и мега миров. Понятно, что границы микро - и макромира подвижны, и не существует отдельного микромира и отдельного макромира. Естественно, что макрообъекты и мегаобъекты, построены из микрообъектов и в основе макро- и мега - явлений лежат микроявления. В классической физике не было объективного критерия отличия макро - от микрообъекта. Это отличие ввел в 1897 году немецкий физик-теоретик, М. Планк: если для рассматриваемого объекта минимальным воздействием на него можно пренебречь, то это макрообъекты, если нельзя – это микрообъекты. В основе представлений о строении материального мира лежит системный подход, согласно которому любой объект материального мира, будь то атом, планета, организм или галактика, может быть рассмотрен как сложное образование, включающее в себя составные части, организованные в целостность. С точки зрения науки важным принципом разделения материального мира на уровни является структура деления по пространственным признакам – размерам. В науку вошли деление по размерам и масштабы большого и малого. Наблюдаемый диапазон размеров и расстояний делят на три части, каждая часть представляет обособленный мир объектов и процессов. Понятия мега-, макро- и микромир на данном этапе развития естествознания являются относительными и удобными для понимания окружающего мира. Эти понятия со временем, вероятно, могут видоизменяться, т.к. они еще мало изучены. Наиболее замечательной характеристикой законов природы является то, что они подчиняются математическим закономерностям с высокой точностью. Чем глубже мы понимаем законы природы, тем сильнее чувствуем, что физический мир как-то исчезает, и мы остаемся лицом к лицу с чистой математикой, т. е. имеем дело лишь с миром математических правил.

Микромир.

Микромир – это молекулы, атомы, элементарные частицы - мир предельно малых, непосредственно не наблюдаемых микрообъектов, пространственная размерность которых исчисляется от 10 8 до 10 16 см, а время жизни - от бесконечности до 10 24 с.

История исследований . Древнегреческим философом Демокритом в античности была выдвинута Атомистическая гипотеза строения материи. Благодаря трудам английского учёного Дж. Дальтона стали изучаться физико-химические свойства атома. В XIX в. Д. И. Менделеев построил систему химических элементов, основанную на их атомном весе. В физику представления об атомах как о последних неделимых структурных элементах материи пришли из химии. Собственно физические исследования атома начинаются в конце XIX в., когда французским физиком А. А. Беккерелем было открыто явление радиоактивности, которое заключалось в самопроизвольном превращении атомов одних элементов в атомы других элементов. В 1895 г. Дж. Томсон открыл электрон. Поскольку электроны имеют отрицательный заряд, а атом в целом электрически нейтрален, то было сделано предположение о наличии помимо электрона и положительно заряженной частицы. Существовало несколько моделей строения атома.

Далее были выявлены специфические качества микрообъектов, выражающиеся в наличии у них как корпускулярных (частицы), так и световых (волны) свойств. Элементарные частицы – простейшие объекты микромира, взаимодействующие как единое целое. Основные характеристики элементарных частиц: масса, заряд, среднее время жизни, квантовые числа.

Стремительно возрастает количество открытых элементарных частиц. К концу ХХ века физика приблизилась к созданию стройной теоретической системы, объясняющей свойства элементарных частиц. Предложены принципы, позволяющие дать теоретический анализ многообразия частиц, их взаимопревращений, построить единую теорию всех видов взаимодействий.

Макромир.

Макромир - мир устойчивых форм и соразмерных человеку величин, а также кристаллические комплексы молекул, организмы, сообщества организмов; мир макрообъектов, размерность которых соотносима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время - в секундах, минутах, часах, годах.

История исследований . В истории изучения природы можно выделить два этапа: донаучный и научный, охватывает период от античности до XVI-XVII вв. Наблюдаемые природные явления объяснялись на основе умозрительных философских принципов. Со становления классической механики начинается научный этап изучения природы. Формирование научных взглядов на строение материи относится к XVI в., когда Г. Галилеем была заложена основа первой в истории науки физической картины мира - механической. Он не просто обосновал гелиоцентрическую систему Н. Коперника и открыл закон инерции, а разработал методологию нового способа описания природы - научно-теоретического. И. Ньютон, опираясь на труды Галилея, разработал строгую научную теорию механики, описывающую и движение небесных тел, и движение земных объектов одними и теми же законами. Природа рассматривалась как сложная механическая система. Материя рассматривалась как вещественная субстанция, состоящая из отдельных частиц. Атомы прочны, неделимы, непроницаемы, характеризуются наличием массы и веса. Существенной характеристикой ньютоновского мира было трехмерное пространство евклидовой геометрии, которое абсолютно постоянно и всегда пребывает в покое. Время представлялось как величина, не зависящая ни от пространства, ни от материи. Движение рассматривалось как перемещение в пространстве по непрерывным траекториям в соответствии с законами механики. Итогом такой картины мира явился образ Вселенной как гигантского и полностью детерминированного механизма, где события и процессы являют собой цепь взаимозависимых причин и следствий.

Вслед за ньютоновской механикой были созданы гидродинамика, теория упругости, механическая теория тепла, молекулярно-кинетическая теория и целый ряд других, в русле которых физика достигла огромных успехов. Однако были две области - оптических и электромагнитных явлений, которые не могли быть полностью объяснены в рамках механистической картины мира.

Эксперименты английского естествоиспытателя М. Фарадея и теоретические работы английского физика Дж. К. Максвелла окончательно разрушили представления ньютоновской физики о дискретном веществе как единственном виде материи и положили начало электромагнитной картине мира. Явление электромагнетизма открыл датский естествоиспытатель X. К. Эрстед, который впервые заметил магнитное действие электрических токов. Продолжая исследования в этом направлении, М. Фарадей обнаружил, что временное изменение в магнитных полях создает электрический ток. М. Фарадей пришел к выводу, что учение об электричестве и оптика взаимосвязаны образуют единую область. Его работы стали исходным пунктом исследований Дж. К. Максвелла, заслуга которого состоит в математической разработке идей М. Фарадея о магнетизме и электричестве. Максвелл «перевел» модель силовых линий Фарадея в математическую формулу. Понятие «поле сил» первоначально складывалось как вспомогательное математическое понятие. Дж. К. Максвелл придал ему физический смысл и стал рассматривать поле как самостоятельную физическую реальность.

После экспериментов Г. Герца в физике окончательно утвердилось понятие поля не в качестве вспомогательной математической конструкции, а как объективно существующей физической реальности. В результате же последующих революционных открытий в физике в конце прошлого и начале нынешнего столетий оказались разрушенными представления классической физики о веществе и поле как двух качественно своеобразных видах материи.


Мегамир.

Мегамир (планеты, звезды, галактика) - мир огромных космических масштабов и скоростей, расстояние в котором измеряется световыми годами, а время существования космических объектов - миллионами и миллиардами лет.

Все существующие галактики входят в систему самого высокого порядка - Метагалактику. Размеры Метагалактики очень велики: радиус космологического горизонта составляет 15- 20 млрд. световых лет.

История исследований. Современные космологические модели Вселенной основываются на общей теории относительности А. Эйнштейна, согласно которой метрика пространства и времени определяется распределением гравитационных масс во Вселенной. Ее свойства как целого обусловлены средней плотностью материи и другими конкретно-физическими факторами. Время существования Вселенной бесконечно, т.е. не имеет ни начала, ни конца, а пространство безгранично, но конечно.

В 1929 году американский астроном Э.П. Хаббл обнаружил существование странной зависимости между расстоянием и скоростью галактик: все галактики движутся от нас, причем со скоростью, которая возрастает пропорционально расстоянию, - система галактик расширяется. Расширение Вселенной считается научно установленным фактом. Согласно теоретическим расчетам Ж. Леметра, радиус Вселенной в первоначальном состоянии был 10-12 см, что близко по размерам к радиусу электрона, а ее плотность составляла 1096 г/см3.

Ретроспективные расчеты определяют возраст Вселенной в 13-20 млрд. лет. Американский физик Г.А. Гамов предположил, что температура вещества была велика и падала с расширением Вселенной. Его расчеты показали, что Вселенная в своей эволюции проходит определенные этапы, в ходе которых происходит образование химических элементов и структур. В современной космологии для наглядности начальную стадию эволюцию Вселенной делят на “эры”:

Эра адронов. Тяжелые частицы, вступающие в сильные взаимодействия;

Эра лептонов. Легкие частицы, вступающие в электромагнитное взаимодействие;

Фотонная эра. Продолжительность 1млн. лет. Основная доля массы - энергии Вселенной - приходится на фотоны;

Звездная эра. Наступает через 1млн. лет после зарождения Вселенной. В звездную эру начинается процесс образования протозвезд и протогалактик.

Затем разворачивается грандиозная картина образования структуры Метагалактики.

В современной космологии наряду с гипотезой Большого взрыва весьма популярна инфляционная модель Вселенной, в которой рассматривается творение Вселенной. Идея творения имеет очень сложное обоснование и связана с квантовой космологией. В этой модели описывается эволюция Вселенной, начиная с момента 10 45 с после начала расширения. В соответствии с инфляционной гипотезой космическая эволюция в ранней Вселенной проходит ряд этапов.

Различие между этапами эволюции Вселенной в инфляционной модели и модели Большого взрыва касается только первоначального этапа порядка 10 30 с, далее между этими моделями принципиальных расхождений в понимании. Вселенной на самых разных уровнях, от условно элементарных частиц и до гигантских сверхскоплений галактик, присуща структурность. Современная структура Вселенной является результатом космической эволюции, в ходе которой из протогалактик образовались галактики, из протозвезд – звезды, из протопланетного облака – планеты.

Первые теории происхождения Солнечной системы были выдвинуты немецким философом И. Кантом и французским математиком П. С. Лапласом. Согласно этой гипотезе система планет вокруг Солнца образовалась в результате действия сил притяжения и отталкивания между частицами рассеянной материи (туманности), находящейся во вращательном движении вокруг Солнца.

СОБСТВЕННЫЕ ИССЛЕДОВАНИЯ.

Проблема взаимодействия мега-, макро- и микромира .

Живой предмет желая изучить,
Чтоб ясное о нем понятье получить,
Ученый прежде душу изгоняет,
Затем предмет на части расчленяет
И видит их, да жаль: духовная их связь
Тем временем исчезла, унеслась!
Гете
Прежде чем перейти к дальнейшему рассмотрению, нам следует оценить временные и пространственные масштабы Вселенной и как-то связать их с местом и ролью человека в общей картине мира. Попробуем объединить масштабы некоторых известных объектов и процессов в единую диаграмму (рис. 1), где слева представлены характерные времена, а справа - характерные размеры. В нижнем левом углу рисунка указан минимальный масштаб времени, имеющий какой-то физический смысл. Этот интервал времени, равный 10 43 с, называется планковским временем («хрононом»). Он намного короче продолжительности всех известных нам процессов, включая очень краткие процессы физики элементарных частиц (например, время существования самых короткоживущих частиц-резонансов составляет около 10 23 с). Выше по диаграмме указана длительность некоторых известных процессов, вплоть до возраста Вселенной.

Размеры физических объектов на рисунке изменяются от 10 15 м (характерный размер элементарных частиц) до 10 27 м (радиус наблюдаемой Вселенной, приблизительно соответствующий ее возрасту, умноженному на скорость света). Интересно оценить положение, которое на диаграмме занимаем мы, люди. На шкале размеров мы находимся где-то в середине, будучи чрезвычайно крупными по отношению к длине Планка (и превышая на много порядков размеры элементарных частиц), но очень маленькими в масштабах всей Вселенной. С другой стороны, на временной шкале процессов длительность человеческой жизни выглядит совсем неплохо, и ее можно сопоставлять с возрастом Вселенной! Люди (и в особенности поэты) любят жаловаться на эфемерность человеческого существования, однако наше место на временной шкале вовсе не является жалким или ничтожным. Разумеется, нам следует помнить, что все сказанное относится к «логарифмической шкале», однако ее использование представляется совершенно оправданным при рассмотрении столь гигантских диапазонов значений. Говоря другими словами, число человеческих жизней, укладывающихся в возрасте Вселенной, намного меньше, чем число времен Планка (или даже времен жизни элементарных частиц), укладывающихся в продолжительность жизни человека. В сущности, мы являемся довольно стабильными структурами Вселенной. Что же касается пространственных масштабов, то мы действительно находимся где-то в середине шкалы, вследствие чего нам не дано воспринимать в непосредственных ощущениях не очень большие, не очень малые объекты окружающего нас физического мира.

Из протонов и нейтронов образуются ядра атомов. Атомы объединяются в молекулы. Если двигаться дальше по шкале размеров тел, то далее следует обычные макротела, планеты и их системы, звезды скопления галактик и метагалактик, то есть можно представить переход от микро-, макро- и мега - как в размерах, так и моделях физических процессов.

Большое и малое.

Быть может, эти электроны -
Миры, где пять материков,
Искусства, знанья, войны, троны
И память сорока веков!
Еще, быть может, каждый атом -
Вселенная, где сто планет.
Там все, что здесь, в объеме сжатом,
Но также то, чего здесь нет.
Валерий Брюсов

Основная причина, по которой мы разделил физические законы на части, относящиеся к «большому» и «малому», заключается в том, что общие закономерности физических процессов в очень большом и очень малом масштабах представляются весьма различными. Ничто не волнует человека так постоянно и глубоко, как тайны времени и пространства. Цель и смысл познания – понять скрытые механизмы природы и наше место во Вселенной.

Американский астроном Шепли предложил интересную пропорцию:

х в этой пропорции – человек, который является как бы средним геометрическим между звёздами и атомами.

По обе стороны от нас неисчерпаемая бесконечность. Мы не можем познать эволюцию звёзд, не изучая атомное ядро. Нам не может быть ясна роль элементарных частиц во Вселенной без знания эволюции звёзд. Мы стоим как бы на перекрёстке дорог, уходящих в бесконечность. На одной дороге время соизмеримо с возрастом Вселенной, на другой оно измеряется исчезающее малыми промежутками. Но нигде не соизмеримо оно с масштабом человеческой жизни. Человек стремится объяснить Вселенную во всех её подробностях, в пределах познаваемого, приемами и способами, посредством наблюдения, опыта и математического вычисления. Нам необходимы такие понятия и методы исследования, с помощью которых могут быть установлены научные факты. А для установления научных фактов в физике вводится объективная количественная характеристика свойств тел и природных процессов, независящая от субъективных ощущений человека. Введение таких понятий является процессом создания особого языка – языка науки физики. Основу языка физики составляют понятия, называемые физическими величинами. А любая физическая величина должна быть измерена, так как без измерений физических величин нет и физики.

И так, давайте попробуем разобраться, что же такое физическая величина. Физическая величина – физическое свойство материального объекта, физического явления, процесса, которое может быть охарактеризовано количественно. Значение физической величины - число, вектор, характеризующие эту физическую величину, с указанием единицы измерения, на основе которой эти числа или вектор были определены. Размер физической величины - числа, фигурирующие в значении физической величины. Измерить физическую величину – значит сравнить ее с другой величиной, условно принятой за единицу измерения. Русское слово «величина» имеет несколько иной смысл, чем английское слово “quantity“. В Словаре Ожегова (1990) слово “величина“ трактуется как “размер, объем, протяженность предмета“. Согласно интернетовскому словарю слово “величина“ переводится на английский язык в физике 11-ю словами, из которых наиболее подходят по смыслу 4 слова: quantity (физическое явление, свойство), value (значение), amount (количество), size (размер, объём).

Разберемся подробнее в этих определениях. Возьмем, например, такое свойство, как длина. Она действительно применяется для характеристики многих объектов. В механике – это длина пути, в электричестве – длина проводника, в гидравлике – длина трубы, в теплотехнике – толщина стенки радиатора и т.д. Но значение длины у каждого из перечисленных объектов различно. Длина автомобиля равна нескольким метрам, длина рельсового пути или – многим километрам, а толщину стенки радиатора проще оценивать в миллиметрах. Так что это свойство действительно индивидуально для каждого объекта, хотя природа длины во всех перечисленных примерах одна и та же.

Большое и малое в других науках.

В одном мгновенье видеть вечность,

Огромный мир - в зерне песка,

В единой горсти - бесконечность

И небо - в чашечке цветка.

У. Блейк

Литература.

Малое и большое употребляются в качественном значении: маленький или большой рост, маленькая или большая семья, родня. Малое обычно противопоставляется большому (принцип антитезы). Литература: малый жанр (новелла, рассказ, сказка, басня, эссе, очерк)

Существует множество пословиц и поговорок, использующих противопоставление или сравнение малого с большим. Вспомним некоторые из них:

О малых результатах при больших затратах:


  • Из большой тучи, да малая капля.

  • Стрелять из пушек по воробьям.
О малом наказании за большие грехи:

  • Это ему - как слону дробина (иголка).
Малое в большом:

  • Капля в море.

  • Иголка в стоге сена.
В то же время говорят:

  • Ложка дёгтя испортит бочку мёда.

  • Мышь копной не задавишь.

  • Малая оплошность доводит до большой беды.

  • Малая течь может погубить большой корабль.

  • Из малой искры большой пожар разгорается.

  • От копеечной свечи Москва сгорела.

  • К апля камень долбит (точит) .

Биология.

«Существо человека содержит все, что есть на небе и на земле, существа высшие и существа низшие».
Каббала

За время существования человечества было предложено множество моделей устройства Вселенной. Существуют различные гипотезы, и каждая из них имеет как своих сторонников, так и противников. В современном мире отсутствует единая, общепризнанная и понятная модель Мироздания. В древнем мире, в отличие от нашего, существовала единая модель окружающего мира. Вселенная представлялась нашим предкам в виде огромного человеческого Тела. Попытаемся понять логику, которой придерживались наши «первобытные» предки:


  • Тело состоит из органов

  • Органы – из клеток

  • Клетки – из органоидов

  • Органоиды – из молекул

  • Молекулы – из атомов

  • Атомы – из элементарных частиц. (Рис. 2).
Так устроены наши тела. Предположим, что Вселенная состоит из аналогичных элементов. Тогда, если мы найдем его Атом, то появится шанс отыскать и все остальное. В 1911 году Эрнест Резерфорд предположил, что атом устроен подобно Солнечной системе. На сегодня это отвергнутая модель, Изображение атома на рис. 2 показывает только центральную часть атома. Атом и Солнечная система целиком представляются сейчас иначе. (Рис. 3, 4)

Различия, конечно есть – их не может не быть. Эти объекты находятся абсолютно в разных условиях. Ученые бьются над созданием Единой теории, но никак не могут соединить в Единое целое Макро и микромиры.

Можно предположит, что если Солнечная система - Атом, тогда наша Галактика – Молекула. Сравните рисунки 5 и 6. Только не пытайтесь отыскать полной схожести этих объектов. В мире нет даже двух одинаковых снежинок. Каждый атом, молекула, органоид, клетка, орган и человек имеет свои индивидуальные особенности. Все процессы, происходящие на уровне молекул органических веществ нашего организма, аналогичны процессам, происходящим на уровне галактик. Различие лишь в размерах этих объектов и в масштабе времени. На уровне галактик все процессы происходят гораздо медленнее.

Следующей «деталью» в этой «конструкции» должен быть Органоид. Что представляют собой органоиды? Это различные по строению, размерам и функциям образования, находящиеся внутри клетки. Состоят они из нескольких десятков или сотен разнообразных молекул. Если органоид в нашей клетке аналогичен Органоиду в макромире, тогда нам следует искать в Космосе скопления различных галактик. Такие скопления действительно имеются, и астрономы называют их группами или семействами галактик. Наша галактика, Млечный путь, входит в Местное семейство галактик, которое включает в себя две подгруппы:
1. Подгруппу Млечного пути (справа)
2. Подгруппу Туманности Андромеды (слева) (Рис. 8).

Не стоит обращать внимание на некоторое несоответствие в пространственном расположении молекул рибосомы (Рис. 8) и галактик в Местной группе (Рис. 9). Молекулы, как и галактики, постоянно перемещаются в определенном объеме. Рибосома является органоидом без оболочки (мембраны), поэтому мы не видим в окружающем нас космическом пространстве «плотной» стены галактик. Впрочем, мы не видим и оболочек Космических Клеток.

Процессы, происходящие в наших органоидах, аналогичны процессам, происходящим в группах и семействах галактик. Но в Космосе они совершаются гораздо медленнее, чем у нас. То, что воспринимается в космосе как Секунда - для нас тянется почти десять наших лет!

Следующим объектом поисков была Космическая Клетка. В нашем теле имеется множество различных по размерам, строению и функциям клеток. Но почти все они имеют нечто общее в своей организации. Они состоят из ядра, цитоплазмы, органоидов и мембраны. Аналогичные образования имеются и в Космосе.

Скоплений галактик, похожих на наше, а также других по форме и размеру – великое множество. Но все они группируются вокруг еще более грандиозного скопления галактик с центром в Созвездии Девы. Именно там находится Ядро Космической Клетки. Астрономы, подобные объединения галактик, называют Сверхскоплениями. На сегодня открыто более пятидесяти таких Сверхскоплений галактик, являющихся такими Клетками. Они располагаются вокруг нашего Сверхскопления галактик - равномерно во все стороны.

За пределы этих соседних Сверхскоплений галактик современные телескопы пока не проникают. Но, используя широко применяемый в древности Закон Аналогии, можно предположить, что все эти Сверхскопления галактик (Клетки) составляют какой-то Орган, а совокупность Органов составляет само Тело.

Именно поэтому многие учёные выдвигают гипотезы, что Вселенная является не только подобием тела человека, но и каждый человек является подобием целой Вселенной.

ПРАКТИЧЕСКАЯ ЧАСТЬ.

Научно-техническое творчество молодёжи –

Путь к обществу, основанному на знаниях.
Школьник понимает физический опыт

только тогда хорошо, когда он его делает сам.

Но еще лучше он понимает его, если сам делает

прибор для эксперимента.

П.Л.Капица

Метапредметное учебное занятие "Большое и малое» с использованием интерактивной доски.

Скажи мне – и я забуду.

Покажи мне – и я запомню.

Дай мне действовать самому – и я научусь.

Китайская народная мудрость
Часто низкая успеваемость объясняется невнимательностью, причина которой – в незаинтересованности ученика. Используя интерактивную доску, у учителей появляется возможность привлечь и успешно использовать внимание класса. Когда на доске появляется текст или изображение, то у ученика стимулируется одновременно несколько видов памяти. Мы можем максимально эффективно организовать постоянную работу учащегося в электронном виде. Это значительно экономит время, стимулирует развитие мыслительной и творческой активности, включает в работу всех учащихся, находящихся в классе.

Интерфейс программы очень прост, поэтому разобраться в ней не составит никакого труда.

Программа состоит из двух частей: вспомогательного материала и сборника заданий для учеников.



В разделе программы

«Вспомогательные материалы»

сможете найти таблицы величин; весы, которые смогут помочь детям разобраться с темой «показатель степени»; снимки и схемы физических тел, похожих по форме, но сильно отличающихся друг от друга по размерам.



В сборнике заданий Вы сможете проверить учащихся на знание темы «Большое и малое». Здесь присутствуют 3 вида заданий: составление таблицы (перемещение строк в ячейки); вопросы, связанные и массами тел (в каком положении установятся весы), упорядочивание величин. Программа может сама проверить правильность выполнения заданий и выдать соответствующее сообщение на экран.

Заключение

Как мир меняется! И как я сам меняюсь!
Лишь именем одним я называюсь.
На самом деле то, что именуют мной, -
Не я один. Нас много. Я - живой...
Звено в звено и форма в форму...
Н. Заболоцкий

Результаты, полученные в ходе выполнения работы , показали, что господство симметрии в природе, прежде всего, объясняется силой тяготения, действующей во всей Вселенной. Действием тяготения или отсутствием такового объясняется то, что и Космические тела, плывущие во Вселенной, и Микроорганизмы, взвешенные в воде, обладают высшей Формой симметрии - сферической (при любом повороте относительно центра фигура совпадает сама с собой). Все организмы, растущие в прикрепленном состоянии или живущие на дне океана, т. е. организмы, для которых направление силы тяжести является решающим, имеют ось симметрии (множество всевозможных поворотов вокруг центра сужается до множества всех поворотов вокруг вертикальной оси). Более того, поскольку эта сила действует повсюду во Вселенной, то и предполагаемые космические пришельцы не могут быть безудержно чудовищами, как их порой изображают, а обязательно должны быть симметричными.

Практической частью нашей работы стала программа «Большое и малое» для метапредметного учебного занятия с использованием интерактивной доски . Используя интерактивную доску, мы можем максимально эффективно организовать постоянную работу учащегося в электронном виде. Это значительно экономит время, стимулирует развитие мыслительной и творческой активности, включает в работу всех учащихся, находящихся в классе.

Работа содержит три приложения : 1) Программу для метапредметного учебного занятия по физике с использованием интерактивной доски; 2) Буклет «Учебное занятия по физике «Большое и малое»; 3) Буклет с уникальными фотографиями «Микро-, макро- и мега- миры» .

Список литературы


  1. Ващекин Н.П., Лось В.А., Урсул А.Д. «Концепции современного естествознания», М.: МГУК,2000.

  2. Горелов А.А. «Концепции современного естествознания », М.: Высшее образование, 2006.

  3. Козлов Ф.В. Справочник по радиационной безопасности.- М.: Энергоатом – издат., 1991.

  4. Криксунов Е.А., Пасечник В.В., Сидорин А.П., Экология, М., Издательский дом "Дрофа", 1995.

  5. Поннамперума С. «Происхождение жизни», М., Мир, 1999 г.

  6. Сивинцев Ю.В. Радиация и человек. - М.: Знание, 1987.

  7. Хотунцев Ю.М. Экология и экологическая безопасность. - М.: АСADEMA, 2002.

  8. Горелов А.А. Концепции современного естествознания. – М.: Центр,1998.

  9. Горбачев В.В. Концепции современного естествознания: Учеб. пособ. для студентов вузов. – М., 2005. – 672 с.

  10. Карпенков С.Х. Концепции современного естествознания - М.: 1997.

  11. Квасова И.И. Учебное пособие по курсу "Введение в философию".М., 1990.

  12. Лавриенко В.Н. Концепции современного естествознания - М.: ЮНИТИ.

  13. Л. Ш и ф ф, Сб. "Новейшие проблемы гравитации", М., 1961.

  14. Я. Б. Зельдович, Вопр. космогонии, т. IX, М., 1963.

  15. Б. Понтекорво, Я. Смородинский, ЖЭТФ, 41, 239, 1961.

  16. Б. Понтекорво, Вопр. космогонии, т. IX, М., 1963.

  17. В. Паули, Сб. "Нильс Бор и развитие физики", М., 1958.

  18. Р. Иост. Сб. "Теоретическая физика 20 века", М., 1962.

  19. Р. Маршак, Э. Судершан, Введение в физику элементарных частиц, М. 1962

  20. Е. Горшунова, А. Таразанов, И. Афанасьева «Большое космическое путешествие», 2011

Приложение 1.

Рабочий лист к метапредметному занятию по теме «Большое и малое»

с использованием интерактивной доски
Не огромность мира звёзд вызывает восхищение,

а человек, который измерил его.

Блез Паскаль

Физическая величина - _____________________________________________________

_________________________________________________________________________
Измерить физическую величину - ____________________________________________

__________________________________________________________________________


Приложение 2.


Диапазон расстояний во Вселенной

м

расстояние

10 27

границы Вселенной

10 24

ближайшая Галактика

10 18

ближайшая звезда

10 13

расстояние Земля - Солнце

10 9

расстояние Земля - Луна

1

рост человека

10 -3

крупинка соли

10 -10

радиус атома водорода

10 -15

радиус атомного ядра

Диапазон временных интервалов во Вселенной


с

время

10 18

возраст Вселенной

10 12

возраст египетских пирамид

10 9

среднее время жизни человека

10 7

один год

10 3

свет идёт от Солнца до Земли

1

интервал между двумя ударами сердца

10 -6

период колебаний радиоволн

10 -15

период колебаний атома

10 -24

свет проходит расстояние, равное размеру атомного ядра

Диапазон масс во Вселенной


кг

масса

10 50

Вселенная

10 30

Солнце

10 25

Земля

10 7

океанский корабль

10 2

человек

10 -13

капелька масла

10 -23

атом урана

10 -26

протон

10 -30

электрон

Рис. 1. Характерное время и размеры некоторых объектов и процессов Вселенной.

Приложение 3.



. Человек. . Органы. . Клетки. . . . Органоиды. Молекулы. . Атом. . . Частицы атома

Рис 2. Строение тела человека


Как говорится - «найдите различия». Дело даже не во внешнем сходстве этих объектов, хотя оно и «на лицо». Раньше мы электроны сравнивали с планетами, а надо было с кометами.


Рис 7. Строение Вселенной.









Рис. 12 Нервная ткань

Рис. 13 Ранняя Солнечная Система





Рис. 14 Фотографии Вселенной с телескопа Hubble

Рис. 15 Этапы развития клетки простейших










Рис. 16 Схематичное изображение клетки

Рис. 17 Строение Земли

Рис.18 Земля


Приложение 4.










Метапредметное учебное занятие по физике

Неделя физики и химии

Неделя физики и химии

Метапредметное учебное занятие по физике, 8Б

Метапредметное учебное занятие по физике

ФОТООТЧЁТ


ФОТООТЧЁТ



НТТМ ЗАО 2012

Всероссийский Фестиваль науки 2011

Стенд «Микро-, макро- и мега- миры»



«Большое космическое путешествие"




Стенд «Большое космическое путешествие»

Наши буклеты.

Микромир – это молекулы, атомы, элементарные частицы - мир предельно малых, непосредственно не наблюдаемых микрообъектов, пространственная разномерность которых исчисляется от 10-8 до 10-16 см, а время жизни - от бесконечности до 10-24 с.

Макромир - мир устойчивых форм и соразмерных человеку величин, а также кристаллические комплексы молекул, организмы, сообщества организмов; мир макрообъектов, размерность которых соотносима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время - в секундах, минутах, часах, годах.

Мегамир - это планеты, звездные комплексы, галактики, метагалактики – мир огромных космических масштабов и скоростей, расстояние в котором измеряется световыми годами, а время существования космических объектов - миллионами и миллиардами лет.

И хотя на этих уровнях действуют свои специфические закономерности, микро-, макро - и мегамиры теснейшим образом взаимосвязаны.

На микроскопическом уровне физика сегодня занимается изучением процессов, разыгрывающихся на длинах порядка 10 в минус восемнадцатой степени см., за время - порядка 10 в минус двадцать второй степени с. В мегамире ученые с помощью приборов фиксируют объекты, удаленные от нас на расстоянии около 9-12 млрд. световых лет.

Микромир. Демокритом в античности была выдвинута Атомистическая гипотеза строения материи, позже, в XVIII в. была возрождена химиком Дж. Дальтоном, который принял атомный вес водорода за единицу и сопоставил с ним атомные веса других газов. Благодаря трудам Дж. Дальтона стали изучаться физико-химические свойства атома. В XIX в. Д. И. Менделеев построил систему химических элементов, основанную на их атомном весе.

В физику представления об атомах как о последних неделимых структурных элементах материи пришли из химии. Собственно физические исследования атома начинаются в конце XIX в., когда французским физиком А. А. Беккерелем было открыто явление радиоактивности, которое заключалось в самопроизвольном превращении атомов одних элементов в атомы других элементов.

История исследования строения атома началась в 1895 г. благодаря открытию Дж. Томсоном электрона - отрицательно заряженной частицы, входящей в состав всех атомов. Поскольку электроны имеют отрицательный заряд, а атом в целом электрически нейтрален, то было сделано предположение о наличии помимо электрона и положительно заряженной частицы. Масса электрона составила по расчетам 1/1836 массы положительно заряженной частицы.

Существовало несколько моделей строения атома.

В 1902 г. английский физик У. Томсон (лорд Кельвин) предложил первую модель атома - положительный заряд распределен в достаточно большой области, а электроны вкраплены в него, как «изюм в пудинг».

В 1911 г. Э. Резерфорд предложил модель атома, которая напоминала солнечную систему: в центре находится атомное ядро, а вокруг него по своим орбитам движутся электроны.

Ядро имеет положительный заряд, а электроны - отрицательный. Вместо сил тяготения, действующих в Солнечной системе, в атоме действуют электрические силы. Электрический заряд ядра атома, численно равный порядковому номеру в периодической системе Менделеева, уравновешивается суммой зарядов электронов - атом электрически нейтрален.

Обе эти модели оказались противоречивы.

В 1913 г. великий датский физик Н. Бор применил принцип квантования при решении вопроса о строении атома и характеристике атомных спектров.

Модель атома Н. Бора базировалась на планетарной модели Э. Резерфорда и на разработанной им самим квантовой теории строения атома. Н. Бор выдвинул гипотезу строения атома, основанную на двух постулатах, совершенно несовместимых с классической физикой:

1) в каждом атоме существует несколько стационарных состояний (говоря языком планетарной модели, несколько стационарных орбит) электронов, двигаясь по которым электрон может существовать, не излучая;

2) при переходе электрона из одного стационарного состояния в другое атом излучает или поглощает порцию энергии.

В конечном итоге точно описать структуру атома на основании представления об орбитах точечных электронов принципиально невозможно, поскольку таких орбит в действительности не существует.

Теория Н. Бора представляет собой как бы пограничную полосу первого этапа развития современной физики. Это последнее усилие описать структуру атома на основе классической физики, дополняя ее лишь небольшим числом новых предположений.

Создавалось впечатление, что постулаты Н. Бора отражают какие-то новые, неизвестные свойства материи, но лишь частично. Ответы на эти вопросы были получены в результате развития квантовой механики. Выяснилось, что атомную модель Н. Бора не следует понимать буквально, как это было вначале. Процессы в атоме в принципе нельзя наглядно представить в виде механических моделей по аналогии с событиями в макромире. Даже понятия пространства и времени в существующей в макромире форме оказались неподходящими для описания микрофизических явлений. Атом физиков-теоретиков все больше и больше становился абстрактно-ненаблюдаемой суммой уравнений.