Что нельзя определить по спектру звезды. Из чего состоят звезды (спектры звезд)? Кирхгоф обобщил свои результаты в виде так называемых законов Кирхгофа

Спектральный анализ в астрономии

В 17 веке английский учёный Исаак Ньютон, наблюдая за звёздами в телескоп, заметил радужную окраску на изображениях. Исследовав явление, он открыл световую дисперсию, которая стала основой современного спектрального анализа. Он основан на изучении распределения интенсивности излучения в зависимости от длины волны. Для этого применяются специальные приборы - фотометры и спектрографы. Благодаря этому методу человечество узнало о масштабах вселенной, эволюции звёзд и перестало ограничивать космос видимым небом.

Виды спектра

Световые волны являются частью огромного диапазона излучений. За видимой границей синей части спектра находятся ультрафиолетовая и рентгеновская зоны. За красным краем распределения лежит тепловая часть длин волн. Гигантские раскалённые тела обычно дают ровный линейный спектр. Нагретые разреженные газы и пары излучают наборы ярких линий определённых цветов. Свет прошедший через облака газов даёт спектр поглощения. Неизлучающие твёрдые тела и жидкости такими методами изучить невозможно. Их состав определяют с помощью фотометров, например модели В-1200 , работающей в диапазонах от инфракрасного до ультрафиолетового.

Анализ космических объектов

Для изучения астрономических тел спектрографию начали применять ещё в 19 веке. Сначала линии поглощения нашли в излучении Солнца. Впоследствии выяснилось, что собственным оригинальным набором полос обладают Сириус, Вега и другие звёзды. К настоящему времени составлен обширный каталог спектрограмм космических объектов. Он позволяет определить химический состав их атмосфер, анализируя линии поглощения.

Другой интересный способ применения спектрометрии в астрофизике разработал в середине 19 века австриец Кристиан Допплер. Он основан на эффекте искажения длины волны для наблюдателя от движущегося источника. При удалении она увеличивается, а при приближении уменьшается. Таким образом, появился способ определять скорость объектов по отношению к Земле. В настоящее время приборы спектрального анализа установлены на множестве космических аппаратах, что даёт новые возможности для астрономов из-за отсутствия влияния атмосферы на результаты исследований.

Спектральный анализ

© Знания-сила

Понятие о спектральном анализе

Сегодня спектральный анализ является одним из основных средств изучения астрономических объектов в астрофизике. С его помощью получены сведения о природе светил, их движении, развитии и химическом составе.

Спектральный анализ основан на свойстве света разлагаться на составляющие его цветовые лучи, т.е. в спектр. По зрительному ощущению мы различаем в спектре семь основных цветов: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый, но в действительности наблюдается переход от одного цвета к другому через промежуточные оттенки. Почему цвета в спектре располагаются в строго определенном порядке, установлено исследованием природы света. Было выяснено, что свет представляет собой распространяющуюся в пространстве смесь электромагнитных колебаний, каждое из которых имеет свой период и соответствующую ему длину волны. Длины волн в спектре принято измерять в специальных единицах - ангстремах (Å), составляющих одну стомиллионную часть сантиметра. В видимом спектре длины волн уменьшаются от красных (около 7000 Å ) до фиолетовых (около 4000 Å ). Длины волн остальных цветов заключены между ними. К видимым лучам примыкают невидимые: короче 4000 Å - ультрафиолетовые и длиннее 7000 Å - инфракрасные.

Разлагают свет в спектр спектральные приборы, важнейшая деталь которых - стеклянная призма или дифракционная решетка. Свет в призме преломляется, причем лучи с большей длиной волн отклоняются от первоначального направления меньше, чем лучи с короткой длиной волны. Разделившиеся лучи попадают в зрительную трубу или фотокамеру.

Спектральные исследования небесных тел основаны на законах излучения. При разогревании тел повышается их температура. У твердых тел она представляет собой меру колебательной энергии их атомов, а у жидких и газообразных - меру кинетической энергии свободных атомов и молекул. У нагретых твердых и жидких тел излучение имеет плавный, непрерывный по длинам волн спектр. Яркость того или иного участка спектра характеризует количество излучаемой телом энергии на этой длине волны.

Например, у тел, нагретых до 1000 К , наиболее ярким будет красный участок спектра, а по мере дальнейшего повышения температуры ярче его становятся последовательно другие участки спектра. У тел, нагретых выше 7000 К , излучение всего ярче в ультрафиолетовых лучах. Глаз не различает эти лучи, зато их чувствуют фотоэлементы и фотоэмульсии. Например, обычные фотопластинки воспринимают излучения с длинами волн от 2000 Å . Но имеются специальные сорта фотопластинок и так называемые фотосопротивления, которые воспринимают инфракрасные излучения, а еще более длинноволновые излучения измеряются термоэлементами и радиоприемными аппаратами.

Спектральные классы

Сплошные спектры излучают только твердые и жидкие накалё́нные тела. У газообразных тел спектры совсем иного характера. Дело в том, что нагретый газ излучает свет в узких участках спектра, имеющих вид ярких линий, называемых спектральными. Это очень важное свойство спектров газов, позволившее разносторонне исследовать газообразные небесные тела - звёзды, туманности и атмосферы планет. Почему газы излучают спектральные линии, объяснила квантовая теория излучения. Атомы поглощают и отдают (излучают) энергию строго определенными порциями - квантами. Чем больше порция, тем в более возбуждённом состоянии оказывается атом, поглотивший энергию. Напомним, что сам атом, как известно из физики, представляет собой систему, состоящую из ядра и облака электронов. Процесс поглощения порции энергии состоит в том, что её получает один самый удаленный от ядра электрон. Чем больше квант энергии, тем независимее ведёт себя этот электрон по отношению к атому. Тот и другой находятся, как говорят, в возбужденном состоянии. Если квант, захваченный электроном, достаточно велик, то электрон может совсем оторваться от атома: происходит ионизация. Атом, потеряв электрон, становится положительно заря́женным ионом (один раз ионизо́ванным), а электрон - свободным. В остальны́х случаях энергии кванта на ионизацию атома не хватает и через считанные доли секунды атом (его электрон) отдаёт порцию энергии в виде излучения. Энергия может отдаваться одной большой порцией или несколькими малыми, которым соответствуют определенные длины волн, т.е. спектральные линии. Эти линии мы и исследуем в спектрах газообразных тел.

Итак, наблюдаемые спектры делятся на три класса:

Три класса спектров:

Обычный (1, без линий), непрерывный спектр.
Такой спектр дают твердые тела, жидкости или плотный непрозрачный газ в нагретом состоянии. Длина волны́, на которую приходится максимум излучения, зависит от температуры.

Эмиссионный (2, с блестящими линиями на темном фоне)
линейчатый спектр излучения. Нагретый разреже́нный газ испускает яркие эмиссионные линии.

И абсорбционный (3, с черными линиями).
линейчатый спектр поглощения. На фоне непрерывного спектра заметны темные линии поглощения. Линии поглощения образуются, когда излучение от более горячего тела, имеющего непрерывный спектр, проходит через холодную разреженную среду.

Распределение энергии излучения по непрерывному спектру и его зависимость от температуры излучающего тела устанавливаются законом Планка . График выражаемой им зависимости для нескольких температур и график распределения энергии в спектре Солнца приведены на рисунке . С законом Планка тесно связан закон Стефана , определяющий соотношение между температурой источника и полным количеством энергии, проходящим через квадратный сантиметр его излучающей поверхности (эта величина носит название полного потока излучения). Полный поток излучения согласно закону Стефана пропорционален четвертой степени температуры излучающего тела.

Но действительные закономерности излучения небесных светил более сложны, чем закон Планка. Во внутренних слоях звёзд этот закон соблюдается неуклонно, но излучение оттуда к нам прямо не приходит, а поглощается атомами наружных слоев звезды. Величина же этого поглощения в сильной степени зависит от химического состава и температуры излучающих слоев звезды.

И хотя распределение по спектру выходящей из звезды энергии отличается от закона Планка, мы можем по нему найти значение полного потока излучения и с помощью закона Стефана вычислить соответствующую этому потоку температуру. Эта температура носит название эффективной температуры и характеризует нагрев излучающей звездной поверхности.

Ещё один важный закон связывает излучение и поглощение света газами. Если газ поместить перед более горячим источником с непрерывным спектром излучения, то на фоне яркого сплошного спектра появятся темные спектральные линии поглощения нашего газа - те же самые, что ранее были видны в спектре газа как яркие спектральные линии (закон Кирхгофа ). Поэтому обнаружение тех или иных линий поглощения в спектре звезды указывает на присутствие в ней химических элементов, которым они принадлежат. Правда, отсутствие спектральных линий того или иного элемента еще не означает, что его нет в звездной оболочке. Просто в звезде могут быть такие условия, что линии элемента весьма слабы и поэтому незаметны.

С помощью закона Кирхгофа астрономы анализируют строение звездных оболочек и их химический состав.

Интенсивность спектральных линий поглощения зависит не только от числа атомов данного элемента, но и от температуры и плотности слоев звездной атмосферы, где они образуются. По интенсивности линий можно установить температуру, плотность и другие характеристики звездных атмосфер.

Эффект Доплера

Очень важную роль в спектральном анализе играет эффект Доплера . Он заключается в том, что если источник излучения движется к нам, то длины волн спектральных линий в его спектре уменьшаются, а если удаляется, то увеличиваются. Смещение спектральных линий, таким образом, характеризует скорость движения источника по направлению луча зрения. Эту скорость называют лучевой скоростью светила v .

Выраженная в километрах в секунду, она пропорциональна смещению длины волны́ наблюдаемой линии λ по сравнению с её длиной волны́ λ о при неподвижном источнике: v=с(λ-λ о)/λ о , где с - скорость света.

Смещение линий в спектре звезды относительно спектра сравнения в красную сторону говорит о том, что звезда удаляется от нас, смещение в фиолетовую сторону спектра – что звезда приближается к нам. Вследствие обращения Земли вокруг Солнца со скоростью V = 30 км/с , линии в спектрах звёзд, удаляющихся от Земли, смещены в красную сторону на Δλ/λ о = V/c = 10 –4 . Для линии λ о = 500 нм смещение составит 0,05 нм (0,5 Å ) . Для звёзд, приближающихся к Земле, линии будут смещены на такую же величину в фиолетовую сторону.

Эффект Доплера дает возможность оценить также и скорость вращения звезд. Например, вследствие вращения Солнца западный край Солнца удаляется от нас, а восточный край – приближается к нам. Поэтому наибольшая линейная скорость вращения Солнца, которая наблюдается на экваторе, равная 2 км/с , дает до́плеровское смещение линии l = 500 нм (5000 Å) в Δl = 0,035Å . При этом на полюса́х Солнца до́плеровское смещение линий уменьшается до нуля.

Даже когда излучающий газ не имеет относительного движения, спектральные линии, излучаемые отдельными атомами, будут смещаться относительно лабораторного значения из-за беспорядочного теплового движения. Для общей массы газа это будет выражаться в ушире́нии спектральных линий. При этом квадрат до́плеровской ширины спектральной линии пропорционален температуре: T ~ (Δl) 2 . Поэтому особенно сильно линии уширя́ются в спектрах горячих звезд. Таким образом, по ширине спектральной линии можно судить о температуре излучающего газа. Линии могут уширя́ться не только за счет эффекта Доплера. Не менее важной причиной является столкновение атомов.

Используя эффект Доплера, астрономы измерили тысячи лучевых скоростей звёзд, газовых туманностей и их деталей, внегалактических объектов, выяснили закономерности движений звезд и вращения звездных систем, нашли массы звездных скоплений и галактик. Кроме того, исследование лучевых скоростей далеких галактик играет важную роль в изучении общих закономерностей Вселенной в целом.

Эффект Зеемана

В 1896 году́ нидерландским физиком Зееманом был открыт эффект расщепления линий спектра в сильном магнитном поле. С помощью этого эффекта стало возможно «измерять» космические магнитные поля. Похожий эффект (он называется эффектом Штарка ) наблюдается в электрическом поле. Он проявляется, когда в звезде кратковременно возникает сильное электрическое поле.

Уважаемые посетители!

У вас отключена работа JavaScript . Включите пожалуйста скрипты в браузере, и вам откроется полный функционал сайта!

Задумывались ли вы над тем, откуда мы знаем о свойствах далёких небесных тел?

Наверняка вам известно о том, что таким знаниям мы обязаны спектральному анализу. Однако нередко мы недооцениваем вклад этого метода в само понимание . Появления спектрального анализа перевернуло многие устоявшиеся парадигмы о строении и свойствах нашего мира.

Благодаря спектральному анализу мы имеем представление о масштабе и величии космоса. Благодаря нему мы перестали ограничивать Вселенную Млечным Путём. Спектральный анализ открыл нам великое разнообразие звезд, рассказал об их рождении, эволюции и смерти. Этот метод лежит в основе практически всех современных и даже грядущих астрономических открытий.

Узнать о недосягаемом

Ещё два столетия назад было принято считать, что химических состав планет и звезд навсегда останется для нас загадкой. Ведь в представлении тех лет космические объекты всегда останутся для нас недоступными. Следовательно, мы никогда не получим пробного образца какой-либо звезды или планеты и никогда не узнаем об их составе. Открытие спектрального анализа полностью опровергло это заблуждение.

Спектральный анализ позволяет дистанционно узнать о многих свойствах далёких объектов. Естественно, без такого метода современная практическая астрономия просто бессмысленна.

Линии на радуге

Темные линии на спектре Солнца заметил ещё в 1802 году изобретатель Волластон. Однако сам первооткрыватель особо не зациклился на этих линиях. Их обширное исследование и классификацию произвел в 1814 году Фраунгофер. В ходе своих опытов он заметил, что своим набором линий обладает Солнце, Сириус, Венера и искусственные источники света. Это означало, что эти линии зависят исключительно от источника света. На них не влияет земная атмосфера или свойства оптического прибора.

Природу этих линий в 1859 открыл немецкий физик Кирхгоф вместе с химиком Робертом Бунзеном. Они установили связь между линиями в спектре Солнца и линиями излучения паров различных веществ. Так они сделали революционное открытие о том, что каждый химический элемент обладает своим набором спектральных линий. Следовательно, по излучению любого объекта можно узнать о его составе. Так был рождён спектральный анализ.

В ходе дальнейших десятилетий благодаря спектральному анализу были открыты многие химические элементы. В их число входит гелий, который был сначала обнаружен на Солнце, за что и получил своё название. Поэтому изначально он считался исключительно солнечным газом, пока через три десятилетия не был обнаружен на Земле.

Три вида спектра

Чем же объясняется такое поведение спектра? Ответ кроется в квантовой природе излучения. Как известно, при поглощении атомом электромагнитной энергии, его внешний электрон переходит на более высокий энергетический уровень. Аналогично при излучении – на более низкий. Каждый атом имеет свою разницу энергетических уровней. Отсюда и уникальная частота поглощения и излучения для каждого химического элемента.

Именно на этих частотах излучает и испускает газ. В тоже время твёрдые и жидкие тела при нагревании испускают полный спектр, независящий от их химического состава. Поэтому получаемый спектр подразделяется на три типа: непрерывный, линейчатый спектр и спектр поглощения. Соответственно, непрерывный спектр излучают твёрдые и жидкие тела, линейчатый – газы. Спектр поглощения наблюдается тогда, когда непрерывное излучение поглощается газом. Другими словами, разноцветные линии на тёмном фоне линейчатого спектра будут соответствовать тёмным линиям на разноцветном фоне спектра поглощения.

Именно спектр поглощения наблюдается у Солнца, тогда как нагретые газы испускают излучение с линейчатым спектром. Это объясняется тем, что фотосфера Солнца хоть и является газом, она не прозрачна для оптического спектра. Похожая картина наблюдается у других звёзд. Что интересно, во время полного солнечного затмения спектр Солнца становится линейчатым. Ведь в таком случае он исходит от прозрачных внешних слоёв её .

Принципы спектроскопии

Оптический спектральный анализ относительно прост в техническом исполнении. В основе его работы лежит разложение излучения исследуемого объекта и дальнейший анализ полученного спектра. Используя стеклянную призму, в 1671 году Исаак Ньютон осуществил первое «официальное» разложение света. Он же и ввёл в слово «спектр» в научный обиход. Собственно, раскладывая таким же образом свет, Волластон и заметил чёрные линии на спектре. На этом принципе работают и спектрографы.

Разложение света может также происходить с помощью дифракционных решёток. Дальнейший анализ света можно производить самыми различными методами. Изначально для этого использовалась наблюдательная трубка, затем – фотокамера. В наши дни получаемый спектр анализируется высокоточными электронными приборами.

До сих пор речь шла об оптической спектроскопии. Однако современный спектральный анализ не ограничивается этим диапазоном. Во многих областях науки и техники используется спектральный анализ практически всех видов электромагнитных волн – от радио до рентгена. Естественно, такие исследования осуществляются самыми различными методами. Без различных методов спектрального анализа мы бы не знали современной физики, химии, медицины и, конечно же, астрономии.

Спектральный анализ в астрономии

Как отмечалось ранее, именно с Солнца началось изучение спектральных линий. Поэтому неудивительно, что исследование спектров сразу же нашло своё применение в астрономии.

Разумеется, первым делом астрономы принялись использовать этот метод для изучения состава звезд и других космических объектов. Так у каждой звезды появился свой спектральный класс, отражающий температуру и состав их атмосферы. Также стали известны параметры атмосферы планет солнечной системы. Астрономы приблизились к пониманию природы газовых туманностей, а также , и многих других небесных объектов и явлений.

Однако с помощью спектрального анализа можно узнать не только о качественном составе объектов.

Измерить скорость

Эффект Доплера в астрономииЭффект Доплера в астрономии

Эффект Доплера был теоретически разработан австрийским физиком в 1840 году, в честь которого он и был назван. Этот эффект можно пронаблюдать, прислушиваясь к гудку проезжающего мимо поезда. Высота гудка приближающегося поезда будет заметно отличаться от гудка отдаляющегося. Примерно таким образом Эффект Доплера и был доказан теоретически. Эффект заключается в том, что для наблюдателя длина волны движущегося источника искажается. Она увеличивается при удалении источника и уменьшается при приближении. Аналогичным свойством обладают и электромагнитные волны.

При отдалении источника всё темные полосы на спектре его излучения смещаются к красной стороне. Т.е. все длины волн увеличиваются. Точно также при приближении источника они смещаются к фиолетовой стороне. Таким образом стал отличным дополнением к спектральному анализу. Теперь по линиям в спектре можно было узнать то, что раньше казалось невозможным. Измерить скорости космических объекта, рассчитать орбитальные параметры двойных звёзд, скорости вращения планет и многое другое. Особую роль эффект «красного смещения» произвёл в космологии.

Открытие американского учёного Эдвина Хаббла сравнимо с разработкой Коперником гелиоцентрической системы мира. Исследуя яркость цефеид в различных туманностях, он доказал, что многие из них расположены намного дальше Млечного Пути. Сопоставив полученные расстояния с спектров галактик, Хаббл открыл свой знаменитый закон. Согласно нему, расстояние до галактик пропорционально скорости их удаления от нас. Хотя его закон несколько разнится с современными представлениями, открытие Хаббла расширило масштабы Вселенной.

Спектральный анализ и современная астрономия

Сегодня без спектрального анализа не происходит практически ни одного астрономического наблюдения. С его помощью открывают новые экзопланеты и расширяют границы Вселенной. Спектрометры несут на себе марсоходы и межпланетные зонды, космические телескопы и исследовательские спутники. Фактически без спектрального анализа не было бы современной астрономии. Мы так и дальше бы вглядывались пустой безликий свет звёзд, о котором не знали бы ничего.

Луч света, проходящий через стеклянную призму преломляется, и после выхода из призмы идет уже по другому направлению. При этом лучи разного цвета преломляются различно. Из семи цветов радуги сильнее всего отклоняются световые лучи фиолетового цвета, в меньшей степени - синего, еще меньше - голубые лучи, затем - зеленые, желтые, оранжевые, меньше всего отклоняются красные лучи.

Любое светящееся тело испускает в пространство лучи разного цвета. Но так как они накладываются один на другой, то для человеческого глаза все они сливаются в один цвет.

Например, Солнце испускает лучи белого цвета, но если мы пропустим такой луч через призму и тем самым разложим его на составные части, то окажется, что белый цвет луча сложный: он состоит из смеси всех цветов радуги. Смешав эти цвета вместе, мы опять получим белый цвет.

В астрономии, для изучения того как устроены звезды, активно используются так называемые спектры звезд . Спектром называется луч какого-нибудь источника света, пропущенный через призму и разложенный ею на свои составные части. Немного отвлекшись, можно сказать, что обычная земная радуга есть ничто иное, как спектр Солнца, ведь своим появлением она обязана преломлению солнечного света в капельках воды, действующих в данном случае подобно призме.

Для того чтобы получить спектр в более чистом виде, ученые пользуются не простой стеклянной призмой, а специальным прибором - спектроскопом .

Принцип работы спектроскопа: мы знаем как «светится» совершенно «чистый» (идеальный) поток света, также мы знаем какие «помехи» вносят различные примеси. Сравнивая спектры, мы можем видеть температуру и химический состав тела, испустившего анализируемый световой поток

Если мы осветим щель спектроскопа светящимися парами какого-нибудь вещества, то увидим, что спектр этого вещества состоит из нескольких цветных линий на темном фоне. При этом цвета линий для каждого вещества всегда одни и те же — независимо от того, говорим мы о Земле или Альфа Центавра. Кислород или водород всегда остаются самим собой. Соответственно, зная как выглядит каждый из привычных нам химических элементов на спектрографе, мы можем очень точно определить их наличие в составе далеких звезд, просто сравнив спектр их излучения с нашим земным «эталоном».

Располагая списком спектров разных веществ, мы сможем каждый раз точно определить, с каким же веществом мы имеем дело. Достаточно малейшей примеси какого-либо вещества в металлическом сплаве или в горной породе, и это вещество выдаст свое присутствие, заявит о себе цветным сигналом в спектре.

Смесь паров нескольких химических элементов, не образующих химического соединения, дает наложение их спектров один на другой. По таким спектрам мы и распознаем химический состав смеси. Если светятся не разложенные на атомы молекулы сложного химического вещества, то есть химического соединения, то их спектр состоит из широких ярких цветных полос на темном фоне. Для всякого химического соединения эти полосы тоже всегда определенные, и мы их умеем распознавать.

Так выглядит спектр нашей «родной» звезды — Солнца

Спектр в виде полоски, состоящей из всех цветов радуги, дают твердые, жидкие и раскаленные вещества, например нить электрической лампочки, расплавленный чугун и раскаленный прут железа. Такой же спектр дают огромные массы сжатого газа, из которого состоит Солнце.

Вскоре после того как в спектре Солнца были обнаружены темные линии, некоторые из ученых обратили внимание на такое явление: в желтой части этого спектра есть темная линия, которая имеет ту же длину волны, что и яркая желтая линия в спектре разреженных светящихся паров натрия. Что это означает?

Для выяснения вопроса ученые провели опыт.

Был взят раскаленный кусок извести, дающий непрерывный спектр без всяких темных линий. Затем перед этим куском извести было помещено пламя газовой горелки, содержащей пары натрия. Тогда в непрерывном спектре, полученном от раскаленной извести, свет которой прошел через пламя горелки, появилась в желтой части темная линия. Стало ясно, что сравнительно более холодные пары натрия поглощают или задерживают лучи той же самой длины волны, какую эти пары сами по себе способны испускать.

Опытным путем, было установлено, что светящиеся газы и пары поглощают свет тех самых длин волн, которые они сами способны испускать, будучи достаточно нагретыми .

Так вслед за первой тайной - причиной окрашивания пламени в тот или другой цвет парами определенных веществ - была раскрыта и вторая тайна: причина появления темных линий в солнечном спектре.

Спектральный анализ в исследовании Солнца

Очевидно, Солнце - раскаленное тело, испускающее белый свет, спектр которого непрерывен - окружено слоем более холодных, но все же раскаленных газов. Эти газы и образуют вокруг Солнца его оболочку, или атмосферу. А в этой атмосфере содержатся пары натрия, которые и поглощают из лучей солнечного спектра лучи с гой самой длиной волны, которую натрий способен испускать. Поглощая, задерживая эти лучи, пары натрия создают в свете Солнца, прошедшем сквозь его атмосферу и дошедшем до нас, недостаток желтых лучей с этой длиной волны. Вот почему в соответствующем месте желтой части спектра Солнца мы находим темную линию.

Так, не побывав никогда на Солнце, находящемся от нас на расстоянии 150 миллионов километров, мы можем утверждать, что в составе солнечной атмосферы есть натрий.

Таким же образом, определив длины волн других темных линий, видимых в спектре Солнца, и сравнив их с длинами волн ярких линий, испускаемых парами различных веществ и наблюдаемых в лаборатории, мы точно определим, какие еще другие химические элементы входят в состав солнечной атмосферы.

Так было выяснено, что в солнечной атмосфере присутствуют те же химические элементы, что и на земле: водород, азот, натрий, магний, алюминий, кальций, железо и даже золото.

Спектры звезд, свет которых тоже можно направить в спектроскоп, похожи на спектр Солнца. И по темным линиям их мы можем определить химический состав звездных атмосфер так же, как мы определили химический состав солнечной атмосферы по темным линиям спектра Солнца.

Таким путем ученые установили, что даже количественно химический состав атмосфер Солнца и звезд очень похож на количественный химический состав земной коры.

Самый легкий из всех газов, из всех химических элементов - водород - составляет на Солнце 42% по весу. На долю кислорода приходится 23% по весу. Столько же приходится на долю всех металлов, вместе взятых. Углерод, азот и сера составляют вместе 6% от состава солнечной атмосферы. И только 6% приходится на все остальные элементы, вместе взятые.

Надо учесть, что атомы водорода легче всех остальных. Поэтому их число далеко превосходит число всех других атомов. Из каждой сотни атомов в атмосфере Солнца 90 атомов принадлежит водороду.

Средняя плотность Солнца на 40% больше плотности воды и все-таки оно ведет себя во всех отношениях как идеальный газ. Плотность на внешнем видимом краю Солнца составляет приблизительно одну миллионную от плотности воды, в то время как плотность вблизи его центра примерно в 50 раз выше плотности воды.

Спектральный анализ и температура звезд

Спектры звезд - это их паспорта с описанием всех звездных примет, всех их физических свойств. Надо лишь уметь в этих паспортах разобраться. Многое еще мы не умеем из них извлечь в будущем, но уже и сейчас мы читаем в них немало.

По спектру звезды мы можем узнать ее светимость, а следовательно, и расстояние до нее, температуру, размер, химический состав ее атмосферы, скорость движения в пространстве, скорость ее вращения вокруг оси и даже то, нет ли вблизи нее другой невидимой звезды, вместе с которой она обращается вокруг их общего центра тяжести.

Спектральный анализ дает ученым также возможность определять скорость движения светил к нам или от нас даже в тех случаях, когда эту скорость и вообще движение светил никакими другими способами обнаружить невозможно.

Если какой-нибудь источник колебаний, распространяющихся в виде волн, движется по отношению к нам, то, понятно, длина волны колебаний, воспринимаемая нами, меняется. Чем быстрее приближается к нам источник колебания, тем короче делается длина его волны. И наоборот, чем быстрее источник колебаний удаляется, тем длина волны по сравнению с той длиной волны, которую воспринял бы наблюдатель, неподвижный по отношению к источнику, увеличивается.

То же самое происходит и со светом, когда источник света - небесное светило - движется по отношению к нам. Когда светило приближается к нам, длина волны всех линий в его спектре становится короче. А когда источник света удаляется, то длина волны тех же самых линий становится больше. В соответствии с этим в первом случае линии спектра сдвигаются в сторону фиолетового конца спектра (то есть в сторону коротких длин волн), а во втором случае они смещаются к красному концу спектра.

Точно так же путем изучения распределения яркости в спектре звезд мы узнали их температуру.

Звезды красного цвета - самые «холодные». Они нагреты до 3 тысяч градусов, что примерно равняется температуре в пламени электрической дуги.

Температура желтых звезд составляет 6 тысяч градусов. Такова же температура поверхности нашего Солнца, которое тоже относится к разряду желтых звезд. Температуру в 6 тысяч градусов наша техника пока не может искусственно создать на Земле.

Белые звезды еще более горячие. Температура их составляет от 10 до 20 тысяч градусов.

Наконец, самыми горячими среди известных нам звезд являются голубые звезды , раскаленные до 30, а в некоторых случаях даже до 100 тысяч градусов.

В недрах звезд температура должна быть значительно выше. Определить ее точно мы не можем, потому что свет из глубины звезд до нас не доходит: свет звезд, наблюдаемый нами, излучается их поверхностью. Можно говорить лишь о научных расчетах, о том, что температура внутри Солнца и звезд составляет примерно 20 миллионов градусов.

Несмотря на раскаленность звезд, нас достигает лишь ничтожная доля испускаемого ими тепла - так далеки от нас звезды. Больше всего тепла доходит к нам от яркой красной звезды Бетельгейзе в созвездии Ориона: меньше Одной десятой от миллиардной доли малой калории 1 на квадратный сантиметр за минуту.

Иными словами, собирая с помощью 2,5— метрового вогнутого зеркала это тепло, в течение года мы бы могли нагреть им наперсток воды всего лишь на два градуса!

«Спектральный анализ физика» - Спектральный анализ Открытый урок. Оптотехники и светотехники нужны - сегодня, завтра, всегда! Стационарно – искровые оптико - эмиссонные спектрометры «МЕТАЛСКАН –2500». В спектрах таких звездах много линий металлов и молекул. Спектральный анализ в астрофизике. Цель урока. Главное поле деятельности Вуда - физическая оптика.

«Спектр излучения» - Лампы дневного света. Классификация источников света. В настоящее время составлены таблицы спектров всех атомов. Примером может служить бурно развивающаяся физическая химия. Спектральный анализ. Такие приборы называют спектральными аппаратами. 4, 6 - гелий. 7 - солнечный. На месте линий поглощения в солнечном спектре вспыхивают линии излучения.

«Спектр» - Спектры испускания. Каждый атом излучает набор электромагнитных волн определенных частот. Три вида: сплошной, линейчатый, полосатый. Открытие гелия. Поэтому каждый химический элемент имеет свой спектр. Полосатый. Усовершенствовал изготовление линз, дифракционных решеток. Спектры. Постулаты Бора. ФРАУНГОФЕР (Fraunhofer) Йозеф (1787–1826), немецкий физик.

«Спектры и спектральный анализ» - Спектры. Спектр излучения. Спектральный анализ. Линии поглощения. Спектроскоп. Уголовное дело. Дисперсия. Газы светятся. Метод спектрального анализа. Длина волны. Иозеф Фраунгофер. Коллиматор. Бунзен Роберт Вильгельм. Спектральный анализ в астрономии.

«Виды спектров» - Водород. 1. Непрерывный спектр. Виды спектров: Наблюдение сплошного и линейчатых спектров. 4. Спектры поглощения. Натрий. 3. Полосатый спектр. Лабораторная работа. Спектральный анализ. Прибор для определения химического состава сплава металлов. Определение состава вещества по спектру. Гелий. 2. Линейчатый спектр.